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FOREWORD
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NASr-65(07) _ entitled "Investigation of Light Scattering in

Highly Reflecting Pigmented Coatings." This report covers the
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report to bear the new number. Project administration and
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The project was under the technical direction of the

Research Projects Laboratory of the George C. Marshall Space

Flight Center_ and Mr. Daniel W. Gates was the cognizant

technical manager. The contract was administered by Mr.

James J. Gangler of the Office of Advanced Research and Tech-

nology_ National Aeronautics and Space Administration.

Major contributors to the program were G. A. Zerlaut_

project leader_ and (alphabetically): T. Church_ shape factor

analysis; H. Iglarsh_ preparation of random models; M.R.

Jackson_ experimental studies and statistical analyses; Dr.

B. H. Kaye_ theoretical Monte Carlo and statistical studies;
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ABSTRACT

INVESTIGATION OF LIGHT SCATTERING
IN HIGHLY REFLECTING PIGMENTEDCOATINGS

Volume 3

MONTE CARLO AND OTHER STATISTICAL INVESTIGATIONS

This search for a theory to predict the reflectance prop-

erties of paint films revealed that several aspects of current

descriptive terminology are insidious barriers to progress.

For example_ the term "highly reflective paint" can only be

defined within a specific context of requirements. Also_

false concepts encouraged a search for a technique for apply-

ing Mie scattering theory to pigment optics.

An introduction to the report is given in Section I. The

relevance of Mie theory to paint technology is discussed in

Section II. The semantic problems of paint reflectance studies

are explored in Section III; it is shown that until randomness,

diffuse light_ pigment shape_ and pigment size are understood

better development of paint technology will be accomplished by

empirical exploration_ which is qualitatively justified a

posteriori rather than predicted theoretically.

Some developmental work on the concepts and the tech-

niques of particle shape measurement was carried out. A

computer program for investigating the potential use of statis-

tical diameters in shape factor analysis was developed. The

shape factor experiments are reported in Section IV.

Possible techniques for simulating particle packing are

presented in Section V_ and a general discussion of Monte

Carlo techniques as applied to reflectance studies is given in

Section VI. General considerations concerning the development

of a random-walk model for studying energy penetration of a

paint film are presented in Section VII.

To study cluster growth in a paint film_ a Monte Carlo

experiment in two dimensions was developed. From the prop-

erties of the model_ a statistical derivation of the Lambert-

Beer law has been proposed. By use of the model_ the possiblc_
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mechanism by which extender particles can increase the opacity
of a given amount of pigment was explored. From statistical

reasoning alone_ the existence of a critical pigment volume

concentration for efficient use of pigment was predicted.

The simulated data are given and their implications discussed
in Section VIII.

Early in the development of a possible random-walk model

for paint reflectance studies_ it was thought that the very

small interparticle distances within the paint film would

place severe restrictions on any model of this type. There-

fore a random screen model was explored. The various aspects
of a random screen model are discussed in Section IX.

Various aspects of general studies of technologies such

as filtration theory are discussed in Sections X and XI.

v IITRI-U6003-19_ Vol. 3
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INVESTIGATION OF LIGHT SCATTERING
IN HIGHLY REFLECTING PIGMENTEDCOATINGS

Volume 3
MONTECARLOAND OTHER STATISTICAL INVESTIGATIONS

I. INTRODUCTION

The principal objective of this program was to apply

light-scattering theory to polydisperse_ highly reflecting_

highly pigmented coatings. The program was aimed at an eluci-

dation of the light-scattering par_neters associated with the

multiple scattering events that operate in highly pigmented

systems. Definition of these parameters should facilitate the

eventual development of pigmented coatings that reflect maximum

solar radiation.

This report_ which is Volume 3 of the three-volume final

report on the subject program_ is concerned with concepts of

statistical approaches and random-walk techniques with which

to treat the problem of multiple scattering. This report and

Volume 2_ "Classical Investigations; Theoretical and Experi-

mental_" are summarized in Volume i_ "Summary Report."

The work reported in this volume consists of: (i) a

discussion of the relevance of Mie theory to highly pigmented

coatings_ (2) discussion of some of the semantic problems

of defining various concepts associated with paint technology_

(3) analysis and discussion of the significance of par-

ticle shape factors_ (4) discussion of pigment packing and

simulation of packing_ (5) results of the development of Monte

Carlo concepts that can be applied to the field of paint tech-

nology and of the development of a model for studying energy

penetration through pigmented films_ (6) discussion of Monte

Carlo techniques for studying growth in scattering centers

as a function of increasing pigment concentration_ and

(7) application of Monte Carlo techniques to fibrous filters

and other problem areas.
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II. RELEVANCEOF MIE THEORYFOR PREDICTINC_REFLECTIVE PROPERTIES
OF PAINT FILMS

The scattering power of a single smooth spherical particle

placed in the path of a plane parallel beam of noncoherent

monochromatic light can be studied by the theory developed by

Mie (ref. I). The variations in scattering power of a single

sphere with refractive index and particle diameter/wavelength

ratio has been computed from the Mie theory, and this curve is

often used to justify the claim that optimum opacity is obtained

with a pigment-particle size of about i/5 the wavelength of the

incident light. _hen the re,vance of the Mie theory to the

physical phenomena occurring within the paint film is considered_

it is found that even if the maximum-opacity pigment size

eventually proves to be 1/5 of the wavelength_ this fact cannot

possibly be deduced from the Mie theory. Any agreement between

fact and speculation stimulated by considering Mie theory can

only be fortuitous.

The relationship between Hie theory and phenomena occurring

within a paint film can be understood by considering several

aspects of interference and Frauenhoffer diffraction patterns of

long single slits for plane parallel beams of monochromatic

noncoherent light. First consider the Frauenhoffer diffraction

pattern of single slits of various widths. These patterns are

shown in Figure i. These patterns are observed on a screen at

infinity (by using simulated lenses). Now consider that the

screens are replaced by a photoelectric device that receives a]l

scattered light, we are not concerned with the spatial

distribution of the energy_ and we observe that the total energy

from the three slits is simply proportional to the slit widths_

i.e. _ 1:5:10. From this point of view_we are not troubled by the

fact that geometric optics does not apply to the system.

Next consider the diffractio_ pattern of a set of slits each

5 wavelengths wide but 50 wavelengths apart. The resultant

2 !ITRI-U6003-19 _ Vol.
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Figure 1

RELATIVE INTENSI'iY IN SINGLE-SLIT DIFFRACTION

FOR THREE VALUES OF SLIT WIDTH OF THE RATIO a/k

(Reproduced from Physics for Students and Enqineers_

by D. Halliday and R. Resnick_ John Wiley and Sons)
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pattern is shown in Figure 2. The interference fringes lie

within the envelope of the diffraction pattern for the single

slit. Familiarity with these diagrams in school textbooks on

optics tends to obscure the important point. Although the

relative intensity pattern is dominated by the system pre-

dicted from the single slit_ the total energy passing through

the slits is proportional to the number of slits. Again_ if

the screen is replaced by a photoelectric detector capable of

receiving all the diffracted light_ the measurement device

would not be able to differentiate between 20 slits 2 wave-

lengths wide or 40 slits 1 wavelength wide_ even though the

spatial distribution of the energy for the two systems would

be very different.

1.0

EntelfPeet° e

_IIIIIl_ilIlli_ fringes

  UVVUNVVUUV 
Figure 2

COMBINED INTERFERENCE AND DIFFRACTION PATTERN

FOR SLITS 5 WAVELENGTHS WIDE AND 50 WAVELENGTHS APART

(Reproduced from Physics for Students and Enqineers_

by D. Halliday and R. Resnick_ John Wiley and Sons)
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Now consider what would happen if we had 50 parallel slits
p

each 5 wavelengths wide but spaced randomly across the diffrac-

tion screen. Any pair of lines would produce an interference

pattern modulated by the diffraction envelope_ but the peaks for

each pattern would be separated by a factor related to the sepa-

ration of the two slits. The argument holds for any pair of

slits_ so that the peak for each pair would fall at different

points within the same diffraction envelope. Averaged out for

the 50 lines_ the net effect would be relatively uniform illu-

mination modulated by the diffraction pattern for the single

slit width. This results in the important observation that the

diffraction pattern for 50 randomly spaced slits is undistin-

guishable from that of 1 slit if the power of the beam for the

single slit is 50 times that of the beam passing through the 50

random slits. Physically what happens is that the random posi-

tioning of the lines obscures the fine structure of the combined

interference diffraction pattern.

So far_ we have considered only the effect of a single

beam. If two beams at two different angles pass through the

same slit_ the system will be as outlined in Figure 3. A screen

placed on the axis of the first beam would show the diffraction

for the specific slit width.* If a second beam at an angle e is

passed through the screen_ a screen placed on the axis of this

second beam would have a slightly different pattern_ since the

effective slit width is now _.sin @_ so the prime diffraction

lobe will be somewhat wider than that for the first beam. If_

however_ the screens are replaced by a semicircular photocon-

ductive device_ the power received by the device will be propor-

tional to _ + _ sin @ if the beams are of equal strength.

The distances in Figure 3 are not to scale. Either the screen

is placed at a relatively great distance from the screen_ or

lenses have to be used to produce the pattern.

5 IITRI-U6003-19_ Vo!. 3
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DIFFRACTION PATTERNS FOR TWO BEAMS PASSING THROUGH THE SAME SLIT
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If there are beams at a whole range of equally spaced

values of 0_ the calculation of the diffraction pattern on a

screen perpendicular to the axis of the prime beam would be very

complicated. Again_ if the screen were moved so that it would be

only several wavelengths from the slit_ the simplified theory of

Frauenhoffer would no longer apply and the calculation of resul-

tant diffraction patterns would be exceedingly complex.

If the system is extended to consist of randomly spaced

parallel slits of the same width and if all the beams are poly-

chromatic_ the calculation of diffraction patterns is_ in prac-

tice_ impossible. How ever_ the power penetrating the screen is

still a function of the available area in the diffracting screen_

and if the width of the screen is of the order of the wavelength

of light_ it is probable that we could treat each hole as a

source of light.

Now consider screens as shown in Figure 4. Consider that

the 14 slits shown are a wavelength wide and that the portion

between the slits is painted with a completely absorbing black

paint. Again_ if one screen were placed in the path of a plane

parallel beam of monochromatic light_ the diffraction pattern

observed on a screen placed at a distance large compared to the

wavelength of light is the diffraction pattern of a single slit

and the power is 14 times that for a single slit.

Now_ however_ consider the problem of studying the passage

of diffuse white light through i00 of these screens placed

three slit widths apart when the surface of the screen between

the slits is 80% reflective. From one point of view_ the diffuse

light can be considered to be a multiplex of parallel equipowered

beams of light at equally spaced units of solid angles in space.

By considering the complications arising from the combined

effects of multiple-wavelength light and multidirectional beams_

it is obvious that knowledge of the Frauenhoffer diffraction

pattern of a single screen containing randomly spaced slits will

be of very little use in solving the partially reflecting nL._iti-

screen problem involving diffuse white light.

7 IITRI-U6003-19_ Vol. 3
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SCREENS CONTAINING RANDOMLY SPACED PARALLEL SLITS OF EQUAL WIDTH
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However_ it can be shown that the Mie theory studies are

related to paint film phenomena in approximately the same manner

as the Frauenhoffer pattern of a single screen containing ran-

domly positioned slits is related to the multiscreen problem.

In order to gain an appreciation of the relevance of some of

the published studies of the optical properties of pigment part-

_les to the general problem of paint reflectance_ it is necessary

to extend the discussion of diffraction phenomena to the case of

a screen containing randomly positioned regular apertures. This

problem has been discussed by Andrews (ref. 2). He considered

Frauenhoffer diffraction of monochromatic noncoherent radiation

for the screen shown in Figure 5. He states: "If a very large

number of identical rectangular apertures with identical orienta-

tion in a plane screen are randomly scattered about on the screen_

the interference pattern of the combination will be smoothed out

to constant intensity_ but the diffraction pattern will be the

same as that for a single rectangular aperture." The bright spots

of the Frauenhoffer pattern for the single aperture are shown in

Figure 5. The screen in Figure 5 is_ in fact_ a two-dimensional

extension of the essentially one-dimensional case of the randomly

spaced slits discussed earlier_ and the considerations leading to

the conclusions given by Andrews are_ in fact_ extensions of those

given for the random slits to two dimensions.

Andrews also points out that the same type of result is

obtained for the diffraction pattern produced by random spheres

located in one plane perpendicular to the forward direction of the

forward beam. Thus_ if human blood corpuscles are placed on a

glass slide and the Frauenhoffer diffraction pattern is studied_

a series of concentric rings typical of the diffraction pattern

of the single spheres is obtained (ref. 3). In fact_ the struc-

ture of the rings is sufficiently well defined that the average

diameter of the blood corpuscles can be deduced from the dimen-

sions of the diffraction rings. A clinical device that makes use

9 IITRI-U6003-19_ Vol. 3
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DIFFRACTION BY RECTANGULAR APERTURES
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of this phenomenon is called Young's eriometer. Thus_ a random

array of uniform spheres confined to a single plane should have

a Frauenhoffer diffraction pattern the same as that for a single

Mie theory represents a general solution for the scattering

properties of a single sphere. When the sphere is very small

compared to the wavelength of light_ the scattering is symmetri-

cal in front of and behind the particle. This type of scatter-

ing is known as Rayleigh scattering. Although Mie theory covers

all scattering phenomena_ the term "Mie scattering" is usually

restricted to the description of scattering by particles in the

size range of 0.25 to l0 k. In fact_ Mie scattering is the grow-

ing tendency toward forward scattering with increasing particle

size (ref. 5). The boundary between classical diffraction

theory and the restricted Mie theor_y is not well defined_ and in

one sense the pattern of scattered light produced by particles

in the range of 0.25 to l0 k can still be called a diffraction

pattern.

The Mie theory is based upon two explicit conditions. First_

the incident beam is a plane parallel beam of noncoherent mono-

chromatic light. Second_ the radiation detector used to explore

the scattering pattern is at infinity_ i.e._ at a distance large

compared to the wavelength of light. In a sense_ therefore_ the

Mie theory corresponds to Frauenhoffer diffraction.

Experiments on a thin (I or 2 particles thick) array of

pigment particles have been conducted (ref. 6) with a spectro-

photometer and monochromatic radiation. Optical equipment of

this kind satisfies the condition of plane parallel incident

radiation with the detector at a large distance. In is not

surprising that these experiments demonstrated maximum scattering

power for a given particle size at wavelengths predicted from the

Mie theory_ since it is a general principle that the diffraction

pattern produced by a thin random array of identical particles

perpendicular to the beam is the same as that produced by a

single particle.
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To conclude from this type of observation that the scatter-

ing power of the pigment in a paint film is optimum at this size

is to attempt to extrapolate from (a) monochromatic single

scattering from a plane parallel beam studied at infinity to (b)

the behavior in diffuse polychromatic light studied at a distance

of two or three wavelengths_ i.e. _ from the next pigment particle.

This is no more logical than trying to predict the behavior of

the series of screens shown in Figure 4 when placed in diffuse

white light at separations of a few wavelengths from Frauenhoffer

diffraction patterns of a single slit.

We suggested in earlier reports (ref. 7_8) that a multi-

layer system may prove to be an efficient paint surface for
preventing penetration of white light.* This suggestion was based

on reasoning whichextrapolated Mie theory results to the complex

interactions occurring in a paint film. If radiation from diffuse

light falls on the particle from all directions, any diffraction

pattern rotated through 360 _ yields the same pattern. Therefore,

with diffuse radiation_ it is the fact that the radiation inter-

acts with the surface that is important_ not the specific diffrac-

tion pattern for a single particle in a specific direction.

Should a multilayer system prove to have important properties,

the properties of the system cannot be regarded as predictable

from Mie theory.

See also discussion and Figure 44 in Section IIID of Report No.

IITRI-U6003-19_ Vofum_ 2.
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III. SEMANTIC PROBLEMS IN STUDYING REFLECTIVE PROPERTIES OF
PAINT FILMS

A. Introduction

In an essay on the meaning of time_ Millikan (ref. 9) states

that the beginnings of science are nearly always found in the

first steps taken toward refining natural but inaccurately

defined concepts and making them more precise. _nen considering

problems associated with the development of highly reflective

paints_ we find that as we extend our desire to control and

predict the properties of paint films many of the words used in

paint technology are not defined precisely enough. Thus the

first stage in developing a new technology is elaboration of a

new terminology.

In developing and planning the studies carried out under

this contract_ many difficulties arose from an inability to give

definite meaning to the concepts and terms used in discussing

properties of paint systems_ Inaccurately defined terms that

have hindered efficient prosecution of the research program are:

random_ diffuse_ size of particle_ scattering power_ highly

reflective_ boundary_ Fresnel coefficient_ and reflection.

I

I

I
!

!

B. Hiqhly Reflectinq Paint Films

When attempting to construct various models of paint films_

it was realized that in the early reports the concept "highly

reflecting paint films" was not defined° One cannot define a

highly reflecting paint film without reference to the boundary

conditions of the system being studied. For example_ does one

attempt to maximize radiative properties with respect to unit

weight or unit volume of the film? To define reflectance of the

paint_ it is necessary to specify the radiation concerned.

In these studies we were concerDed with an environment in

which the energy is direct radiation from the sun (in a vacuum)_

but this fact was not explicit in early definitions of high

reflectivity. Because of the changes brought about by absorbed
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radiation_ it may also be necessary to take into account a time

integral of the radiation effects on the paint film for the

required time interval. In studies concerned with paint for

spacecraft_ a highly reflective paint film should be optimized

with respect to unit weight of film. In cannot be stated too

strongly that the general concept "highly reflective paint" has

no meaning unless it is applied in the operational context in

which the paint film is to be used.

C. Specification of Piqment Size

In an excellent review article on the relationship between

the particle size of pigments and the properties of the paint

made from them. Newman (ref. I0) made these comments. "If one

wishes to make a scientific correlation between pigment particle

size and paint properties_ it is necessary to be able to measure

with some reasonable degree of accuracy quantities involved in

the proposed correlation. Unfortunately_ the scientific accept-

able knowledge both of the pigment particle sizes and of really

significant paint properties still leaves mucll to be desired."

Although these remarks were made almost 20 years ago_ they

are relevant to the current state of knowledge and practice in

the paint industry. In particular_ there is not sufficient

awareness that the precision with which a particle size can be

defined may be the limiting factor in applying light-scattering

theory to the study of the optical behavior of paints. For

example_ consider the curve shown in Figure 6. In the literature_

this type of curve has been suggested as an effective universal

curve to be used in studying pigment optics (ref. ii). The

merits of this curve as a valid measure of optical scattering

power in a paint film need to be examined as a result of our

criticisms of the use of the Mie theory and optical experiments

made with parallel beams of light on dilute dispersed suspensions

(see Section IITC_ Volume 2_ of this final report). Leaving the

question of its validity open at this stage of the discussion_
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let us consider the difficulties of applying it even if it were

established as the operative_ effective function.

4

3

2

1

J I i f
0.l 0.2 0.5 1.0

x

K = extinction coefficient

x = dm2-1_ where m is relative refractive index

m2+2

Figure 6

CLAIMED UNIVERSAL EFFECTIVE EXTINCTION CURVE

FOR PIGMENT PARTICLES

Consider the problem of predicting the performance of a

pigment by using this curve. In the July 16_ 1963_ issue of

Chemical Processinq it was claimed that hydrated alumina can be

used as a pigment or filler in paint systems.

characteristics of the powder were quoted as:

Average Particle

Size_ _ Method

0.12

0.39

0.60

0.30

The measured

BET

Fisher subsieve sizes

MSA centrifuge

Electron microscope
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In applying the light-scattering curve of Figure 6 (even

making the daring assumption that the average particle size can

be used to calculate the overall properties of the paint)_ which

value of the diameter should be used? The two extreme estimates

differ by a factor of 5_ and the four estimates would locate at

very different regions on the scattering curve.

The other aspect of this problem is the difficulty of

correlating reported data on the light-scattering properties of

small particles. It is common practice to report data by drawing

graphs of some measured quantity such as extinction coefficient

versus particle diameter. However_ the significance of the

measured diameter quoted is not always apparent. For example_

consider the curves in Figure 7. These curves represent data

from light-transmission data reported by Andreasen and coworkers

(ref. 12) from their studies of barium sulfate suspensions. The

variable & is defined as the specific extinction and is related

to the extinction coefficient.

The significance of these transmission data will be discussed

when the transmission measurements reported for suspensions are

reviewed (Section IIIC _ Volume 2_ of this report). The important

point is that only a careful reading of the text of the Andreasen

paper reveals that the particle-size parameter used in plotting

the data is the length of the cube volume equal to that of the

sphere of equal Stokes' diameter. Let this length be k. By

definition_

k 3 1
= _d 3

k 3r--L 3 f

= _ 0.525 = 0.807

Therefore_ without a full realization of the exact definition of

particle size used_ a superficial location of the peak of the

transmission could have been 20% off if the Stokes' diameter had

been used as the parameter.
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Curve A:

Curve B :

Curve C :

k = 7500 A

k = 5300 A

k _ 4300 A

1 2 3

Particle Size_ b

4

Figure 7

LIGHT-SCATTERING PROPERTIES OF BARIUM SULFATE PRECIPITATES
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Even if we developed an ideal: foolproof method for analyz-

ing the size distribution of raw pigment before it was us_d in

'_)aint films and even if all remaining difficulties w,ere avoided;

one important problem still remains: What is the operative size

distribution of the pigment when it is dispersed in the fiim?

Studies of sections through paint films by analytical tech-

niques for determining state of dispersion and spatial configura-

tion of pigment locations are almost nonexistent. To understand

the importance of the question_ consider the systems in Figure 8_

in which the dispersion rate in a paint film is considered from

a simplified two-dimensional system. In Figure 8a a number o _:

circles are set at random; in Figure 8b these are collecte@ into

random clusters.

The grouping of the particles has a twofold effect. P'irst_

it reduces the area of the film in which pigment particles d<e

available for scattering interaction. _,_en a very crudc, estimate

of interaction area: made by projecting interaction area:; along

the base line, shows that the clusters are less effective. It is

not sufficient to regard a cluster as a formation of particles of

larger diameter. A cluster has a higher effective absorption co-

efficient; because its internal porosity tends to oscillat_ t!_,J

light back and forth; whereas a single particle has a lower ab-

sorption coefficient, because of the probability of a shorter

pdth length wit_!,_n its boundaries.

A filler may im[orove the opacity of an active white pi(i_uent;

since rdndom mixing of the larger inert filler particles prevents

large clusters of pig_uent from forming by filling in the inter-

stitial spaces available. One way to improve the performance of

paint may be a mechanical process for ensuring random efficient

dispersion within the film. In testing the performance oi any

film from any theory: however; the exact nature of the di,_{LLibu -

tion within the film must be known.

Section IIIG discusses problems associated with determJ na-

tion of partic]< _ size by examining sections through _i pai_ ! [ilm.

Section VIII d_::cr_b<_s Monte Carlo studies of the distrib_ll i,_n of

scattering cent<:rs form<_d by clustered particles in a pai_It [ilm.
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Figure 8

DIFFERENT DISPERSION STATES WITHIN A PIGMENT FILM
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D. The Concept of Randomness

The term "random" as used in everyday speech describes a

system that is not uniform or is nonsystematic. _hen the term

is used to describe a system that has finite dimensions in space.

it is necessary to be specific about the exact nature of the

randomness of the system considered. Two similar systems can

both be random in the technical sense and yet have different

physical properties. This fact can be illustrated by considering

the problem of drawing random lines across a circle. This situa-

tion arises in the study of the light-scattering behavior of

paint films_ since the average length of intercepts of a circle

could represent the average path of photons through a spherical

pigment particle.

One method of constructing random intercepts of circles is

to draw a circle on a piece of paper and then toss thin wires

onto the paper in a random manner. The record of the different

positions in which the wires fall provides a set of random inter-

cepts. However_ it can be shown that this kind of randomness is

not necessarily a true simulation of the random paths through a

spherical object.

There are four possible mathematical procedures for con-

structing random intercepts. In the finest method, the perimeter

is divided into a convenient set of intervals. Each interval is

then allocated a number. To construct a random intercept, two

numbers within the appropriate range, are selected from random-

number tables, and a line .is drawn between the two corresponding

points on the perimeter. This method is illustrated in Figure

9a_ and an example of this type of random intercept is shown in

Figure i0. Circular graph paper with the perimeter divided into

360 intervals (polar graph paper) was used. Random numbers

between i and 360 were seiected_ and then 20 random lines were

drawn to construct the system of random intercepts given in

Figure i0.
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2 "ii

28_ 2
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-- 22 _ i7
_J 20 19 18

Method 1 : Intercept drawn between two randomly

selected points on the perimeter.

Figure 9a

J_letnod 2 :

I

Line drawn perpendicular to radius r I at angle 81

to fixed direction; r I and 8 selected randomly.

Figure 9b

Method 3: Line drawn through point P of coordinates x_y in

a direction 8. The coordinates x and y are on a

rectangular grid; x_y and 8 selected randomly.

Figure 9c

Figure 9

TiIREE iiETI:ODS OF DRAWIf_G R_qDOM I!4TERCEPTS IN A CIRCLE
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In the second method_ the length of a radial line r I is

chosen from random-number tables_ and the direction of this line

with respect to some fixed direction_ 0_ is also chosen at

random. Then the intercept is drawn perpencircular to this

radius. The method is illustrated in Figure 9b. An example of

the system is given in Figure ii. Figures i0 and ii show that

shorter intercepts are more probable in method i_ and for that

kind of randomness_ the average intercept length is smaller in

method i than in method 2.

In the third method_ a point is specified by using a rec-

tangular grid system superimposed upon the circle. Then the

direction of the line at this point is selected at random. This

method is illustrated in Figure 9c. Method 3 is equivalent to

method 2_ since in method 2 all values of direction are equally

probable and all values of p are equally probable. This fact

can be deduced from the following reasoning.

Consider the families of intercepts for a given direction

of various values of r. Since each value of r is equally prob-

able_ a set of parallel lines will be obtained. Therefore_ all

possible intercepts are formed by rotating a set of parallel

lines about the center point. As the lines come closer and

closer together_ at any point in space there will be a group of

intersecting lines that are spread uniformly through 360 ° .

This result is also obtained when many intercepts are drawn by

method 3. An alternative viewpoint is that x and y specify a

value_ p_ and that corresponding values of r and 01in method 2

result in an intercept of the same length and direction as if x_

y_ and 0 were chosen.

In the fourth metho_ a point on the perimeter is chosen by

using random-number tables and the direction is chosen in the

same manner. This method is mathematically equivalent to method

i. Therefore_ methods i and 4 and methods 2 and 3 are equivalent.

In subsequent discussions methods 1 and 4 will be called method

and methods 2 and 3 will be called method B.
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Figure ii

LINES DRAWN PERPENDICULAR TO RADIUS

FOR RANDOMLY SELECTED ANGLES TO A FIXED DIRECTION
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The physical method of constructing random intercepts

described at the beginning of this section corresponds to

method B. That is_ if we consider the midpoint of the wire

tossed onto the paper_ the probability of finding this point at

any point within the circle is the same for all possible points.

This is equivalent to saying that all possible x and y coordin-

ates for this fixed reference point on the wire are equally

probable. On landing_ all possible orientations of the wire

are equally probable. Therefore the tossing of the wire onto

the cirlce is physically equivalent to method B.

Therefore the wire-tossing method yields average intercept

lengths that correspond to those obtained graphically by using

method B. It can be seen that the apparently simple concept of

randomness is not simple when we try to define a random system.

E. Diffuse Liqht

A search was made of standard optical textbooks for a

definition of diffuse light. It was not possible to find a

precise definition_ since normally the term is used in the sense

of "nondirected light" rather than in the sense of a particular

spatial distribution of radiant energy. In order to begin the

development of the theory of diffuse light penetration_ we

defined diffuse light as follows.

Diffuse light is light in which the density of photons per

unit volume is the same at any location in space with all direc-

tions for the photon tracks being equally probable. By this

definition_ the density of photon entries at any point of the

pigment perimeter is equal at all points on the perimeter. This

is equivalent to saying that all points of entry for any speci-

fied photon are equally probable. The probability of directions

permissible for the photon after it crosses the pigment boundary

is difficult to assess_ since we cannot talk about refraction

phenomena unless we have an extended wave front. If equal

probabilities for all possible directions can be assumed_ the

possible tracks correspond to the intercepts constructed by

method A.
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If gas molecules instead of photons are considered, the
effect of collisions would have to be considered. The effect of

collisions would be to bring the density of particles per unit

volume to the same value for all regions of the system for

which track lengths are being considered. This would tend to

make track lengths equivalent to those constructed by method B_

since in this technique the density of intersection of tracks is

more uniform over the area considered.

It may be possible to deduce the correct type of randomness

for diffuse light by using the fact that the average branch as

considered by method A is shorter than that as considered by

method B. Therefore_ the absorption of a colored pigment that

is related to path length through the pigment particle should be

related to the type of random track that occurs.

F. Boundary Conditions of Paint Films

To enable any postulated optical theory of paint behavior

to be applied to any paint-film system_ the boundary conditions

of the paint film must be known. The important boundary condi-

tions are:

(a) Surface finish and reflectivity of the boundary

between the incident energy and the pigment-
vehicle matrix

(b) Surface finish and reflectivity of the boundary

between the pigment-vehicle and the body to

which the paint film is applied

(c) Extent and spatial configuration of the paint
film.

The surface finish of the boundary surfaces is important

because it affects the energy entry_ energy escape_ and direc-

tional properties of radiation within the paint film. The paint

industry is concerned with the surface finish of a paint_ but

only gross qualitative properties such as the gloss or matt

nature of a surface are measured.
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In studies of the interaction of waves with a boundary_

it is generally recognized that the surface is smooth if irregu-

larities are small compared to the wavelength of light. However_
there is little information on how surface irregularities affect

radiation incident on a surface or on how large a smooth area
must be before regular reflection occurs.

Strong (ref. 13) quotes data for infrared reflection from

brass plates of various roughnesses. Figure Ii shows that the

energy entering the brass plate depended greatly on the surface

finish. On a superficial level it can be argued that_ since a

smooth surface rejects a higher amount of energy than a rough

one_ the aim should be to have a smooth surface finish. In this

manner the pigment-vehicle reflecting matrix will have less

energy to cope with.

However_ a brief examination shows that this argument is

too simple. All the energy returned to the surface by the pig-

ment particles has to pass through this surface to be expelled

from the system. The very fact that the smooth surface is an

efficient barrier to incident energy means that scattered energy

returning from the pigment particles encounters an efficient

radiation barrier. It is conceivable that a rough surface may

be more effective when averaged over many radiation-transfer

events.

A second property of a rough surface that could increase

the overall reflectivity of the surface is that directional

properties of the incident radiation would be changed; i.e._

part of the incident radiation would become diffuse and would

be spread over a greater area of the pigment film_ which there-

fore would be utilized more efficiently. Without quantitative

information on the reflectance of directed and diffuse light

from rough surfaces and also on the reflective power of smooth

surfaces for incident diffuse radiation_ it is not possible to

develop quantitatively the statistical models for a paint film.
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G. Size Distribution of P i_qment Particles Dispersed in Paint

F i ims

A_alytical techniques for studying the particle-size dis-

tribution of a three-dimensional system from two-dimensional

sections are almost nonexistent. The work described in this

section was initiated to examine the feasibility of developing

techniques for measuring the size distribution of a pigment

from sections through a paint film. There are some geometric

probability theories that can be used as a basis for analytical

procedures for deducing the particle-size distribution of a

pigment embedded in a paint film.

Let there be n particles of arbitary shape embedded in a

unit volume. We define the average surface, a_ as:

where

._

niai

i=s
a -

niis the number of particles of area a i

i:s and i:_ are the smallest and largest particles

present.

We define the average volume as:

(1)

2_ nivi

i -:s
v - (2)

n

where n i is the number of particles of volume v i.

Let a plane section be taken at random through the pigmented

matrix. Let n
P

per unit area_ and let P
a

sections defined by:

i:

1 1.
i=s

p -

a np

be the number of sections exposed in the plane

be the average perimeter of these

(3)
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• where there are n. particles of perimeter P.. We define the
1 1

average area of the exposed sections as:

_niA i

i=s
A = (4)
p n

P

where there are n i exposed sections of area A i-

Now let a random line be drawn on the exposed_section. Let

there be n2 intersections with the exposed portions of pigment

per unit length of the random line. We define the average

length of the sections of the random line in the pigment parti-

cles as:

_niL i

i=s (5)
=

All the above definitions assume that the summation is

averaged over many unit areas and many unit lengths. It can be

shown (ref. 14) that the above-defined quantities are linked by

the relationship:

npAp = n_L_ = nv (6)

From this relationship it follows that since nv is the volume

fraction of pigment _ from the definition of A and L

i= _ P P

= _ niA i = surface of exposed pigment per (7)

i=s unit area

i=J

= density exposed (8)= niL l fractional of

i=s pigment on any random line drawn
in the section

Since the relationships in Equations 7 and 8 would apply

separately to different pigments present_ it follows that the

relative proportions of the different substances can be deduced

by repeated application of the relationship. This fact is al'

ready being used in grain analysis of metal sections and in
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evaluation of ores. Usually Relationship 8 is used. The same

relationship is also used to evaluate from aerial photographs

the proportion of different kinds of trees in a forest.
It can be shown that the total perimeter per unit area. n Pp a_

2n
n P = .m

p a

is:

(9)

when averaged over many events. This relationship was first

derived by Cauchy (ref. 15). From a second theory of Cauchy's

it can be shown that:

na = 4n unit length units (i0)

(This at first appears to be dimensionally incorrect_ but it

should be recalled that a is the average area per unit volume

and dimensionally is measured in length units.) From Relations

i0 and 6 it fol]ows that:

na 4n 4

nv n L L,

In a more useful form this relation is written:

S 4
- = - (Ii)
v

"The ratio of volume to surface per unit volume of a pigment

is the average fractional length within the pigment of a random

line drawn across a section through the paint film." As far as

we are aware_ this relationship has never been suggested in this

form for application to the study of paint films. It has been

used by Bates and Pillow (ref. 16) _ who showed that the average

path of a sound wave in an auditorium is 4VS -I. This relation-

ship would seem to have great potential in the study of random

paths through nonhomogeneous systems.

Although we are proposing currently to use the relationship

to find the surface/volume ratio for a pigment, it can be used

in reverse to predict the average path through a given phase in

a nonhomogeneous system if the surface/volume ratio is known.

For instance_ consider the path of a drill through a sintered
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metal body. If the surface/mass ratio of the sintered metal

particles were known_ the average depth of actual metal in any

drilled hole could be predicted•

Except for the work of Bates and Pillow (ref. 16)_ we are
not aware of any experimental proof of Equation ii; we could use

a simulated system to test the relationship_ however•

Again_ from Relation 6:

A =n_

p n
P

But_ from Relation 9:

n_ = npP a

Therefore

Ap = Pa - L2 . 27r (12)

As far as we are aware_ this is the first time that this relation-

ship has been deduced. It is difficult to be certain_ because

the information for abstractions of this kind has to be searched

over such a broad range of literature•

Again_ using the symbol _ for the average length of the

random intercept and using _, as the average perimeter per unit

section_ Equation 12 is written in the consise form (since_ from

Equation 7_ the volume fraction of pigment is numerically the

same as the area exposed per unit section):

=y_ _-• 2 (13)

H. Discussion

Some interesting general equations related to the problems of

deducing the properties of a three-dimensional disperse system

from a study of two-dimensional sections were developed. Possible

limitations of the general validity of the equations for the case

of reentrant figures have to be explored. No general theory of

the prediction of the light-scat_ring properties of a paint from

a consideration of the particle-size distributions of the pigment

can be tested until good methods are available for physically

studying sections of paint films.
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IV. MEASUREMENT OF SHAPE OF PARTICLES

A. Analysi s

In the literature on particle-size analysis the term

"shape factor" has been used in the following manners. First_

it has been applied to factors used to convert linear dimensions

of individual particles to corresponding particle surfaces and

volumes. Since powder usually contains at least a small range

of shapes_ these shape factors are usually averaged values for

several particles.

Second_ the term has been used to describe the ratio of

the mean diameters measured by two different techniques. For

instance_ if d s is the mean diameter determined by sieving and

d is the mean diameter determined by microscopic examination_
m

ds/d m would be a measure of the shape effects that have contri-

buted to the difference between the diameters. Neither of these

types of shape factors is appropriate to the problem of defining

the shape of a particle dispersed in a paint film, particularly

since the shape of a cluster is sometimes of interest to the

technologist.

One other type of shape factor has been briefly mentioned

in the literature. This is the use of the ratio of two statis-

tical diameters_ which have been measured by microscope count_

to characterize shape. Two statistical diameters that have

been used are Martin's diameter and Feret's diameter. Martin's

diameter is the mean length of a line intercepting a profile

boundary of the image of the particle and dividing the image

into two portions of equal area. The bisecting line is always

taken parallel to the direction of traverse. Feret's diameter

is the mean length of the distance between two tangents on

opposite sides of the image of the particle. The tangents are

drawn perpendicular to the direction of traverse.

These definitions show that statistical diameters are

mathematical conventions used to describe readily measured

averages and not actual physical dimensions of individual
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particles• An apparent advantage of this type of shape factor
is that the use of statistical diameters removes the need for

constant realignment of the eyepiece graticule to measure a

Darti_111ar a_m__ of a pa_±u±_ The use of the ratio of

statistical diameters to define shape is an attempt to define

a shape factor in terms of parameters that can be measured

readily•

The lack of information on the number of particles to be

counted to obtain a given confidence of a measured statistical

diameter probably accounts for the fact that ratios of statis-

tical diameters have not been used widely to describe the shape

of the particles• The potential use of this type of shape

factor was explored for a simplified set of particle profiles

by investigating the relationship between the Martin's and the

Feret's diameters for a given type of profile• In the theoret-

ical investigation reported here+ we considered the case of

particles having either elliptical cross sections or projected

areas that are elliptical.

In the following discussion the major and minor axj_

of the elliptical profile are referred to as 2a and 2b+

respectively (see Figure 12). There is no particular reason

to choose an ellipse+ except that it is a definite+ familiar

shape and its analytical geometry is moderately tractable•

For the first stages in developing a theory of statistical

shape factors analysis+ we shall assume a monosized population

of particle profiles in random array•

The equation of the ellipse in the x'-y' coordinate

system is:

x,2 y,2
-- + = 1

a 2 b 2

By rotating coordinates to the x-y system_ the transformed

equation is:

Ax 2 + 2Bxy + Cy 2 = 1 (14)

where
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Figure 12

STATISTICAL DIAMETERS (SHOWING COORDINATE SYSTEM)

FOR ELLIPSOIDAL PARTICLE
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2 2
A - cos Q + sin Q

a 2 b 2

B = sin O cos Q /1 =_

D-/

sin 2 O cos 2 0
C - +

' 2 b 2a

It is necessary to define Feret's diameter t dft and

Martin's diameter t dmt explicitly as functions of a t b t and Q.

Feret's diameter is equal to twice that value of y for which

dy/dx equals zero. Calculating dy/dx yields:

dy _ Ax + By _ 0
dx - - Bx + Cy -

or the equivalent:

Ax + By = 0 ..

This equation t together with Equation 14 t determine x and y at

the point where the tangent to the ellipse is horizontal. By

solving simultaneously t it is found that:

y = _/(AC - B 2)

Eliminating A t B t and C and doubling the result gives:

df(atb;O) = 2 _ 2 cos 2 O + a 2 sin 2 O

Martin's diameter is equal to twice that value of y

obtained when x equals zero. That is t

y =/f/c
or

(15)

dm(atb;Q ) = 2ab (16)

_2 sin 2 Q + a 2 cos 2 Q

Next it is desired to average out the dependence on the

random variable O so as to get expected values for df and d m

As before t a and b are fixed. The desired quantities are

given by:
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and

_/2

r 2 I" 2 _2 2 2 'E idf = _ _ cos O + a sin 2 O dQ (17)

0

_/2

E[d _ = _ [ 2ab dO (18)

t m _ _ _2 sin 2 2 2 "0 O + a cos O

These expressions already assume that O is distributed uniformly
P _

on [0_m/2]. Because of symmetry_ it is only necessary to
J

consider the first quadrant.

Expressions 17 and 18 are elliptic integrals. The next

step is to convert them to standard form. Eliminating cos 2 O

and dividing suitably yields:

_/2 ,, 2 )
E dr! 4b r l (b2 2

- _ t v b2 sin O d8 (19)
0

and

_/2

I ] _b I_ dO (20)
E d m = _- _ / a 2 b 2 )

0 / ( - 2
/ i - sin O

V 2
a

In Equation 19 it is convenient to interchange a and b. This

is permissible. It is equivalent to relabeling the axes for

the Feret's diameter; the expected value is not affected. The

result is:

_/2

E [_[df" _ _4a _I
L

0

1 - (a2 - b2) sin 2 O dO (21)
2

a

Next assume that a is greater than or equal to b.

2 b 2
k 2 _ a -

2
a

Set

Expressions 20 and 21 become:

36 IITRI-U6003-19_ Vol. 3



_/2

=
0 _ - k 2 sin 2 Q

and

_/2

[d] 4_ f_ k2 _in2OdOE f - "IT

0

The complete elliptic integrals of first and second kind

are defined_ respectively_ by:

=/2
K(k) = f dQ

0 k 2 sin 2

and

_/2
P / %

E(k) = J _i - k 2 sin 2 0 dQ

0

For present purposes_ it is more suitable to regard K and E as

functions of b/a. This leads to:

[ ] _ _/_ c=_E dm =_-

and

E[d_ - _4a E(b/a) (23)

Next_ divide Equation 23 by Equation 23:

E[dm]_ b • K(b/a) (24)

E[d_ a E(b/a)

The quotient on the left is a shape factor_ since it is

dimensionless_ and it characterizes the particle population.

The same is true of the ratio b/a. Thus Equation 24 is a

relation between these two shape factors. Figure 13 is a plot

of one shape factor against the other.
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SHAPE FACTOR CONVERSION
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Equations 22_ 23_ and 24 are all that are necessary to

[ _ and E[d_ the values of a and b. Alterna-
obtain from E d

tively_ E dm and E df can be found from a and b. In order

to simplify this calculation_ a tabulation of b/a_ K(b/a)_ and

E(b/a) has been prepared along with the values of the right-

hand side of Equation 24. These parameters are presented in

Table i.

If a and b are given_ Feret's and Martin's diameters can

be found from Equations 22 and 23 once D and E are extracted

from the table. An example of the reverse procedure might be

useful. Suppose that the following values of the two diameters

are given.

m

d = 5. 3499
m

and

df = 8.1918

Bars are used on these quantities_ which presumably were

obtained experimentally_ to distinguish them from the theoret-

ically expected values.

Next_ calculate the ratio:

d

m = 0.65308

_f

By taking this value to column 4 of Table 1 and interpolating

to columns i_ 2_ and 3_ it is found that:

m

b
- = 0.25012

a

K(b/a) = 2.8004

m m

E(b/a) = 1.0723

Finally_ by transposing Equations 22 and 23 and replacing the

expected values by the measured values_ it is found that:
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TABULATIONOF DATA REQUIRED

Table i

TO DETERMINESHAPE FACTOR( Equation 24)

b/a

1.00000

0.98163

0.96126

0.93358

0.89879

0.88295

0.86603

0.83867

0.80902

0.77715

0.75471

0.71934

0.69466

0.65606

0.62932

0.58779

0.55919

0.52992

0.50000

0.48481

0.46947

0.45399

0.43837

0.42262

0.40674

0.39073

0.37461

0.35837

0.34202

0.32557

0.30902

0.29237

0.27564

0.25882

0. 24192

0. 22495

0. 20791

0.19081

0.17365

0.15643

0.13917

0.12187

0.10453

0.08716

0.06976

0.05234

0.03490

0.01745

K(b/a)

1.5708

1.5854

1.6020

1.6252

1.6557

1.6701

1.6858

1.7119

1.7415

1.7748

1.7992

1.8396

1.8691

1.9180

1.9539

2.0133

2.0571

2.1047

2.1565

2.1842

2.2132

2.2435

2.2754

2.3088

2.3439

2.3809

2.4198

2.4610

2.5046

2.5507

2.5998

2.6521

2.7081

2.7681

2.8327

2.9026

2.9786

3.0617

3.1534

3.2553

3.3699

3.5004

3.6519

3.8317

4.0528

4.3387

4.7427

5.4349

E(b/a)

1.5708

1.5564

1.5405

1.5191

1.4924

1.4803

1.4675

1.4469

1.4248

1.4013

1.3849

1.3594

1.3418

1.3147

1.2963

1.2681

1.2492

1.2301

1.2111

1.2015

1.1920

1.1826

1.1732

1.1638

1.1545

1.1453

1.1362

1.1272

1.1184

1.1096

i.i011

1.0927

1.0844

1.0764

1.0686

1.0611

1.0538

1.0468

1.0401

1.0338

1.0278

1.0223

1.0172

1.0127

1.0086

1.0053

1.0026

1.0008

1.00000

0.99992

0.99963

0.99878

0.99714

0.99616

0.99486

0.99227

0.98885

0.98429

0.98048

0.97344

0.96765

0.95712

0.94857

0.93320

0.92084

0.90669

0.89031

0.88133

0.87167

0.86126

0.85021

0.83841

0.82577

0.81227

0.79782

0.78242

0.76594

0.74841

0.72962

0.70961

0.68836

0.66559

0.64129

0.61534

0.58766

0.55808

0.52648

0.49258

0.45630

0.41729

0.37528

0.32978

0.28031

0.22589

0.16509

0.09476
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m

_ _df
a - - 6.000

4E(b/a)

and

_d

_ m - 1.500
m

4K(b/a)

-In most cases values of and d m will be obtained from

measurements of a fixed number_ say n_ of particles. It will

be assumed from now on that both measurements are obtained from

the same set of particles_ rather than two independent sets.

It will be seen that it is desirable to meet this condition.

Now_ in order for df and dm to be consistent with Equations 17

and 18_ it is required that they be obtained from arithmetic

averages of the observed values.

Equations 17 and 18 assume that Q is uniformly distributed
r o

i_0_/2 I. When a finite sample is taken_ this condition will
on

seldom be met exactly. Suppose in a particular experiment that

large values of Q occur sli_[ tly more often than small values.

Then_ from Figure 12_ it is seen that both d_ and dm will be

larger than their expected values. However_ in the ratio

dm/d f the effect of these two errors cancels to a certain

i extent_ so that the value of the ratio should be somewhat moreaccurate than either df or d m. Similarly_ since the shape

factor b/a is a function only of the shape factor dm/df_ its

value should be more accurate than either a b alone.
or

The next result consists of an attempt to estimate the

I variances of d_f and dram" This attempt is successful to the

I extent that exact theoretical expressions for the variances

can be found. However_ to evaluate these expressions requires

a knowledge of a and b_ or of EIdf] and EIdm]. Since these
_ J L J

quantities are not known_ certain simplifications are made.

Analogous to Equations 14 and 18 for the expected values

are two integrals for the variances:
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Similarly_

2 2 e 2
(a,b) = -- ' df (a_b;g) dO -

0

E 2 (df i

2(a_b ) 2 _ 2m -j dm (a_b;g) dQ- E21d _J
I m

0

Equations 15 and 16 can be substituted into these_ and the

integrals can be found in closed form:

af2(a_b) = 2(a 2 + b 2) - E 2 df (25)

2 E210 (a_b) = 4ab - d (26)
m m

The use to be made of these results is as follows. Under

certain regularity conditions of the underlying population

distribution and when n is sufficiently large, the Central Limit

Theorem asserts:

Vat (df) = !n jf2 (27)

m) 1 o 2 (28)Var (d = n m

Equations 25 and 26 cannot be applied in an experimental case_

since a and b are not known exactly. One approach is to esti-

mate them by using observed sample variances:

n 2

2 _ 1 r'_sf n - 1 L,  df(Oi) - %t
n-i

2
A similar calculation is made for s .

m

As an alternative_ the following approach is proposed.

Let a and b be quantities obtained from dff and d m as described

above. In Equations 25 and 26 replace the four theoretical

parameters by their observed values. The following estimates

2 2
of Jf and _m are obtained.

2 _2 _2 -- 2
cf = 2( + ) - df (29)
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2 - _-2C = 4a5 (30)m m

These estimates can be justified in part in the following way.

If, by chance_ d7 and d_ are exactly equal
E[d.] E[d ]to and

..... L2 L mJ'
then cf 2 and Cm2 are exactly equal to fff2 and ffm .rj The same

2 2
cannot be said of sf and sm .

In order to illustrate the use of these quantities_ con-

sider again the numerical example. By using the previous

values_ Equations 29 and 30 yield:

2

cf = 9.4

2
c = 7.4
m

Again_ from the Central Limit Theorem as expressed by Equations

27 and 28_ we can assert that the following inequalities hold

approximately 68% of the time_ provided that n is sufficiently

large.

o'f ~ __ o'f

--< df - E[df]Lj _ --

_ a-- Eramlt,_ _
m

Assuming a sample size of twenty for the example leads to:

;.s07

4.; 0
By proceeding in the same way_ estimates can be made for

the variances of a and b. Rewrite Equations 22 and 23 in the

form:

-- 77

= _ _--

4K(b/a) m

In view of previous remarks_ assume that b/a is known very

accurately compared to d7 and d_. Accordingly_ E(b/a) and

K(b/a) can be considered constants. This gives:
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Var (a) _ _ _ _2-- _ _ Var (df)
<4E(b/a) •

77 ._2Var (b) _
4K (b/a) _ Var ( )

Tm

Again assuming a sample of twenty for the example_ it is found

that:

Var (a) _: 0.25

Vat (b) :_ 0.029

Finally_ the true population parameters_ a and by will satisfy

the following inequalities approximately 68% of the time.

5.5 a 6.5

1.33 _ b 4 1.67

TO conclude_ it is worthwhile to discuss the interpreta-

tion of the results and also the possibilities for extending

them. Suppose a sample of particles is drawn from a population

of arbitrary nonuniform particles_ not necessarily ellipses.

All the measurements and calculations described above can still

be performed. The values of a and b obtained can be thought of

as the semiaxes of a reference ellipse that characterizes the

particle population in some sense. This is exactly analogous

to the way in which the Stokes' diameter is used.

One possible generalization of the results would be to

permit a and b to possess probability distributions of their

own. In the present case of two parameters_ a joint distribu-

tion should be chosen. Assuming one can be selected, the

analytic calculations become enormous. All the single integrals

become double or triple integrals. In order to get estimates

of variance in the present case_ certain approximations had to

be made; these were not entirely satisfactory. For the ex-

tended problem_ even this step would probably not be possible

at all. The most promising approach for this larger problem

appears to be the use of large-scale sampling experiments on a

digital computer.
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B. Possible Developments in Shape Factor Analysis Techniques

From the studies reported in Section A on the possibility

of using the ratio of Martin's to Ferret's diameter to charac-

terize shape factors _-= irregularly _**a___ _-_i_ it is

obvious that any method of measuring that takes into account

orientation by seeking to make many measurements of a magnitude

projected into a fixed direction is an inefficient measuring

technique. In the following discussion_ possible techniques

for measuring shape factors independent of orientation are

outlined.

The ratio of the radii of two circles that encircle some

paramaters of the particle profile could be a very useful shape

factor. One possible shape factor of this type would be the

ratio of the radius of the circumscribing circle whose center

is on the center of gravity of the particle profile to the

radius of the circle of equal area. This shape factor we

define as the extension shape factor. This shape factor would

be independent of the orientation of the particle and would not

involve estimating the position of tangents with regard to a

fixed direction. It would have the disadvantages that two

operator decisions would be required: (i) the location of the

appropriate center and (2) the judgment of equal areas.

It is probable that the first judgment would not be too

difficult and that the second would be an easier judgment than

estimating Martin's diameter_ but this would have to be investi-

gated experimentally by conducting a series of tests with a

team of operators and a set of test profiles. This measurement

could be carried out very rapidly by using a variable-iris

diaphragm and photomicrographs. The use of the circle of equal

area is suggested because this would facilitate isolation of

particles of the same size but with different shapes. This

shape factor would have a value of 1 for a spherical particle_

and the value would increase for an elongated particle.
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Another shape factor of the same type we can call an

extremity shape factor. The extremity shape factor would be
defined as the ratio of the radius of the circumscribing circle

to the inscribed circle when the center of both circles is on

the center of gravity of the particle profile. This shape

factor would also be equal to unity for a spherical particle

but would increase more rapidly than the extension shape factor

as the particle profile became elongated. It would reduce

operator decisions to location of the particle center and to

recognition of intersections. It is anticipated that these

operator decisions would be relatively free from bias and cause

little fatigue. However_ the isolation of differently shaped

particles and concurrent sizing of the particles would be more

difficult.

It is probable that the extension shape factor could be

measured easily Dy photoelectric means. The particle profile

could be placed in a light beam with its center on the axis of

the beam and a diaphragm opened. The radius of the circum-

scribing circle is the value of r at which the received light

intensity begins to increase in proportion to 2_rdr. It should

be possible to visually display gain against expected gain or

to have a meter indicate when this situation is reached.

To measure the circle of equal area_ the particle profile

is moved and the diaphragm reduced until the intensity without

the particle has dropped to that with the particle. Alterna-

tively_ the optical system could be altered_ and an increasing

black circle could be used to measure the obscuring power of

the particle. It should be possible to gain high precision for

a relatively small amount of work with these shape factors_

since they are independent of the orientation of the particles.

This type of shape factor could be very useful in the

analysis of photomicrographs. With improved methods of obtain-

ing photomicrographs_ such as the use of Polaroid film_ these

types of shape factor could acquire important technical meaning.
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A different type of shape factor that may have important

properties is the ratio of the perimeter of the particle to

the square root of the area. This shape factor would have a

minimum of 2_ for a circle and would increase with increasing

departures from the circular shape. Probably this type of
shape factor has not been used in the past because of the

difficulties associated with the measurement of the perimeter.
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V. SIMULATION OF PACKING OF PIGMENT PARTICLES IN PAINT FILMS

In order to obtain a satisfactory model for studying the

penetration of light through a pigmented film, it is necessary

to study the structure of a randomly packed paint film. Direct

studies of the packing of powders of different shape and size

distributions have been reported by various workers (ref. 17-20).

The experiments described in this section were carried out

to explore the possibility of using a new technique for simu-

lating the packing properties of small particles. This pre-

liminary discussion will be limited to monosized spheres

assembled in a random manner.

Consider sections taken at random through a sphere. All

sections are equally probable. It can be shown that the

fractional area of solids exposed by a section taken through

a random packing is numerically equal to the volume fraction

of solids in the three-dimensional packing. Therefore, it

should be possible to simulate the appearance of a section

through a three-dimensional packing by using the probability

distribution of particle sections that can be in the plane of

the section and by using some appropriate plotting technique

for locating the particle sections in the plane of the section.

To carry out a trial set of experiments, we considered

the packing of spheres of 2.5-in. diameter. To simulate sec-

tions through this sphere, a circle of 2.5-in. diameter was

thrown at random onto a set of parallel lines 0.25 in. apart.

The diameters of the I0 sections formed by the straight lines

were as follows.

Section Diameter,
No. in.

1 1.40

2 1.95

3 2.25

4 2.45

5 2.50

6 2.49

7 2.35

8 2.10

9 1.65

I0 0.80
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A set of circles with these diameters was prepared. The

first plotting schedule tried was as follows. A large circle

of 15.in. diameter was drawn on a graph paper having rectan-

gular coordinates. A profile was selected at random by

selecting an integer between 1 and i0. The profile selected

was placed at the center of the large circle. A series of

profiles was selected at random from random-number tables.

When a profile was added to the system being built up in the

large circle, it was allowed to touch the profile nearer the

center and the last profile was added. The buildup of pro-

files proceeded in a clockwise manner. The procedure was

repeated until the large circle was full of profiles.

As the cluster of circular profiles approached the perim-

eter of the containing circle_ it was not always possible to
place the selected profile and a second choice had to be made.

Eventually_ when the plotting was completed, the region in the

vicinity of the perimeter was deficient in profiles with re-

spect to the regions near the center of the system, because of

the impossibility of plotting circles that intersected the

perimeter. The low density in the region of the perimeter of

the system is termed "edge effect" in this discussion.

To measure the local porosity of a selected region within

the system of profiles, a circle of i0 in._ i.e._ 4 sphere

diameters, was placed on top of the system. In the first

experiments the position of the center of the circle was

chosen by choosing two random coordinates from a random-number

table such that the superimposed circle did not come within
i

1 in. of the perimeter of the 15-in. circle. The porosity of

the 10-in. circle was measured by tracing out the equivalent

solid portions onto the 10-in.-diameter disc. These portions

were then cut away. The residual fractional weight of the

disc was numerically equal to the porosity_ if uniform thick-

ness of the paper is assumed.

By arranging for the test circle of i0 in. to be well

within the simulated packing field, edge effects were excluded.
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Table 2 reports the data for eight experiments. These porosi-

ties were lower than those reported for random packing.

Table 2

MEASUREDPOROSITIES FOR SIMULATED PACKING
OF bIONOSIZED SPHERES WITHOUT END EFFECTS

Density

Trial Packinq Porosity

1 0.816 0.184

2 0.831 0.169

3 0.829 0.171

4 0.825 0.175

5 0.819 0.181

6 0.830 0.170

7 0.806 0.194

8 0.823 0.177

The experiments were repeated_ and the search circle was

allowed to touch the perimeter of the simulated packing. In

this way_ edge effects were included. The porosity was mea-

sured_ and these data are given in Table 3. The porosity was

higher and was closer to that of real random packings_ which

normally involve edge effects.

Table 3

MEASURED POROSITIES FOR SIMULATED PACKING

OF 5_NOSIZED SPHERES WITH END EFFECTS

Density

Trial Packinq Porosity

1 0.740 0.260

2 0.764 0.236

3 0.755 0.245

4 0.7'72 0.228

5 0.756 0.244

6 0.761 0.239

7 0.759 0.241

8 0.760 0.240
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A figure often quoted for randomly packed monosized

spheres is 39.5% (ref. 20). The simple simulated model de-

scribed here obviously does not adequately take into account

the competition for space by adjacent spheres.
In Section IIIG it was shown that the average track density

across a field of view is numerically equal to the porosity.

The formula was tested by drawing lines at random on the simu-

lated field of view and measuring the track density per unit

line_ but the line was terminated 1 in. from the perimeter_ so
that edge effectswere eliminated. The results for 20 measure-
ments are shown in Table 4. From this distribution of results_

plotted in Figure 14_ it can be seen that the measured porosi-
ties are distributed according to the Gaussian equation with a
mean value of 81%. This value compares well with the poroSity

measurements made by the search-circle-weighing technique.

Table 4

_ASURED POROSITIES FOR PACKING OF RANOOMLYCHOSENLINES
ENDING 1 IN. FROMEDGE

Density
Trial Packinq Porosity

1 0.905 0.095

2 0.863 0.137

3 0.751 0.249

4 0.869 0.131

5 0.816 0.184

6 0.813 0.187

7 0.722 0.278

8 0.869 0.131

9 0.857 0.143

i0 0.827 0.173

ii 0.768 0.232

12 0.882 0.118

13 0.764 0.236

14 0.853 0.147

15 0.815 0.185

16 0.746 0.254

17 0.775 0.225

18 0.840 0.ii0

19 0.849 0.151

20 0.747 0.253
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FREQUENCY OF OCCURRENCE OF POROSITIES LESS THAN STATED SIZE
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VI. USE OF MONTE CARLO METHODS IN PAINT TECHNOLOGY

The Monte Carlo technique for solving complex physical

_hl_m_ _ _ve _ _i_bl_ _eteneinn sinn_ it was used

by Von Neuman and Ulam to solve the problems of neutron shield-

ing associated with the design of atomic reactors. McCracken

(ref. 21) has given an excellent introduction to the theory of

Monte Carlo techniques. He points out that the basic procedure

in a Monte Carlo method for solving problems is to construct a

statistical model of a complex physical problem. The behavior

of the physical system is then simulated by studying the be-

havior of the statistical model. McCracken discusses the

problem of a neutron traveling through matter; and he points

out that we can write mathematical formulas for the probabili-

ties at each collision_ but we are often not able to write

anything useful for the probabilities of an entire sequence of

collisions.

The problems associated with the study of light trans-

mission through a paint film are somewhat analogous to the

problems associated with radiation penetration through a paint

film. Because the pigment particles are randomly distributed

through the paint film and because their size is of the same

order as the wavelength of light_ we cannot use macroscopic

optic theory with its associated concepts of reflection and

refraction. The radiation penetration problem involves the

solution of many random interactions between randomly directed

photons and randomly distributed particles.

For a system of interaction of this kind_ we construct

probability equations; but_ as in the case of neutron shield-

ing discussed by McCracken_ it is virtually impossible at the

present stage of technology to write anything useful for the

probability of an entire sequence of interactions.

From a study of the literature of paint film research_ it

appears that too many scientists have been preoccupied with

studying to a high degree of precision isolated physical

properties of individual constituents of the paint film and
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that little research has been directed toward the interaction

between physical variables within the paint film.
In an attempt to elucidate the complex phenomena occurring

within a paint film, we have explored the possibility of con-

structing several statistical models of a paint film. The

properties of these statistical models have been investigated

to determine whether anything concerning the properties of real

paint systems can be deduced from the models. In justification

of this novel approach to solving problems of paint technology,

it should be noted that Van de Hulst (ref. 23) has recently

criticized current attempts to solve multiple-scattering

problems. He states that "too much emphasis has been placed

upon redoing with better accuracy and more refined mathematical

methods the problems for which rough answers are already

available." He also points to the encouraging fact that

"usually_ the intuitively chosen solution turns out to be the

correct one." By implication, he exhorts the scientist to

seek intuitive solutions to some of the more complex inter-

action problems.
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VII. RANDOM-WALK MODEL FOR STUDYING ENERGY PENETRATION

THROUGH PAINT FILMS

A. Theoretical Considerations

In an initial attempt to construct a statistical model of

a paint film we considered the possibility of studying the

interaction of radiation in a cloud of particles many diameters

apart. It was postulated that a study of the variation in

properties of the scattering behavior of a well-dispersed cloud

as the solids concentration increased could give some indica-

tion of the behavior of a paint film.

The initial idea consisted of Considering the interaction

between a beam of light and a particle by using Mie theory and

then calculating the secondary scattering events from a know-

ledge of the probability distribution of particles in the cloud.

This successive study of energy events cascading through the

cloud is, in effect_ a random-walk study.

A regular array of particles in the cloud would at first

sight appear to be the simplest model for studying interaction

phenomena. A regular array of particles is shown in Figure 15.

In a cloud of this type the density of scattering centers is

not independent of the =_ _ _ eh_ incident radiation.

In fact, a random array of particles is the simplest model to

treat_ since the properties of the array on the average (aver-

aged over a sufficient distance) are independent of the direc-

tion of travel. The only effect of nonnormal incidence is

that a given thickness of film appears thicker. These effects

are illustrated in Figure 16. It may therefore be possible to

study several random walks through a random array and average

them for an average effect.

To investigate penetration of radiation through a cloud

of particles_ consider radiation incident on a particle. After

interaction_ the energy will be radially distributed about the

center of the particle. Then consider possible locations of

the next sphere encountered and determine how the energy is

distributed.
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PROPERTIES OF A CLOUD OF PARTICLES IN REGULAR ARRAY
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RANDO_IARRAYS

A random array has properties independent of the

direction studied if averaged over a sufficient

distance; i.e._ on the average_ a line drawn in

any direction intercepts the same number of particles.
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For instance_ in Figure 17 the center of the prime scatter-

ing is denoted by O. The arrow AO denotes vectorially the

direction and magnitude of the incident radiation and is not

intended to represent the physical nature of the interaction

between the particle and the light beam. The other arrows_ OB_

OC_ OD_ etc. _ denote the magnitude and direction of the scat-

tered radiation in the various angular bands delineated by the

dotted lines. The distance to the next sphere encountered in

any direction will vary according to the solids concentration

of the array and to random fluctuations in position.

Initially_ let us study the direction parallel to the

incident radiation. Let G be the center of the second scatter-

ing sphere when the scattering spheres touch and H the center

at the greatest probable distance. For any given concentration

of solids it should be possible to calculate the probability

distribution of the second scattering centers between G and H.

For each position of the scattering center along GH the solid

angle subtended by the second sphere can be calculated_ and

the energy in this case can be considered to interact with the

second sphere. By averaging for all possible locations and by

weighting the average to allow for the probability of occurrence_

the average energy occurring at I (the edge of the sphere of

influence of the second interaction) can be calculated.

The next stage of development is calculation of the proba-

bility distribution of particle centers within the cloud. Let

£ _ volume fraction of empty space in the particle

cloud

volume fraction of vehicle in collapsed cloud_

i.e. _ a paint film

n n number of particles per unit volume of system

V _ volume of particle
P

z 1 - E _ volume fraction of particles in a cloud

(note _/V _ n)
P

: solid angle that the second particle subtends

with respect to the center of the prime

scattering particle
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= extension factor used to take into account that

a particle exerts an influence over a greater

area than its physical projected area

F(_) = function defining the energy entering a

xyz solid angle _ that has as its axis the

line joining the centroid of the area

defining the solid angle _ the coordinates

of the centroid being x_ y_ and z

V = volume of cloud studied.
s

The simplest average interparticle distance that can be

calculated for a monosized system of spheres is that for a

system in which the particles are assembled in a symmetrical_

cubic array. This simple average is a useful average even

when considering the properties of a random array_ because

from it we can calculate the order of magnitude of particle

separation within a given cloud. Such a system is shown in

Figure 18.

Let x be the distance between centers. It follows from

the symmetry of Figure 18 that each particle occupies a
3

volume x of the array. Therefore

1 3
- x

n

where n is the numDer of particles per unit volume. Now

1 3
V = _ndP

where d is the diameter of the particle.

_ 6e
n - V 1 3

p _vd _d 3

Then

where a is the volume fraction of particles.

3 _d 3
x -

6e

and

Therefore

Let y be the number of particle diameters between particle

centers.
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INTERPARTICLE DISTANCE IN A MAXIMUM SEPARATION UNIFORM ARRAY
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3/_- 3,:

x /A (31)
Y - d -/ 6_ - 0.806

From this relation we see that the average interparticle dis-

tance in a symmetrical array is a function of the volume

concentration only.

A graph of the relationship in Equation 31 is shown in

Figure 19. The volume concentration at which the particles

touch is that for y = i. For nonspherical particles in random

array_ the values read from the curve in Figure 19 are not

exact but do indicate the order of magnitude for intersurface

separation.

B. Solid Anqles Subtended in Multiple-Particle Systems

The discussion here is limited to spherical particles.

An important factor determining the effects of multiple scat-

tering within a cloud of particles is the distance between the

particles. Since the scattered light from a particle is non-

homogeneous in space_ the interaction with a particle at a

given distance varies with its orientation in space with

respect to the direction of the incident beam and the center

of the prime scattering particle.

A general relationship concerning the position of the

second particle can be expressed as follows. For a plane wave

incident on a spherical particle as shown in Figure 201 the

second particle shown subtends a solid angle _ defined by:

projected area of particle (_/4)d 2= - (32)
R 2 R 2

If the x_y_z coordinates of the system shown in Figure 20 are

defined by the fact that the y-z plane is perpendicular to the

direction of the incident radiation_ it follows that

R 2 2 y2 2= x + + z (33)

Therefore

d 2
./ (34)

7F

2 2 2
x + y + z
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Let the general function for the distribution of the

scattered energy from the prime scattering particle be F(_)xyz,
where F(_) _ ........ _ ="- _ - _ _ _ z are *_

coordinates of the line joining the center of the particle to

the centroid of the area defining the solid angle Z- The

solid angle of influence of the second scattering particle is

greater than its nominal solid angle_ since radiation adjacent

to the perimeter is also affected by the particle.

Let q be an extension parameter such that _:; is the area

over which the particle influences the incident radiation.

At the present stage of development of the theory we assume

that j is a function both of d/k_ the ratio of the particle

diameter_ and of S, the direction; k is the wavelength of the

radiation considered.

An important quantity in predicting the effects of mul-

tiple interaction is the solid angle subtended by a particle

that is a specified number of diameters away from secondary;

particles; i.e., R is expressed as a number of diameters.

Let R : yd. The solid angle subtended is:

_d 2 1

¢ 4
_v2d 2

_ (35)

y24

Now the scat%ered energy is distributed into 4_ steradians.

The numerLca] fraction of scattered energy intercepted by a

particle y dlameters from the first particle is:

(f) - ;, i_
o 4 i,

Y y_4

1 (36)(f)

Y y216

A plot of the relationship _n Equation 36 is given in

Figure 21.
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C. Probability Distribution of Interparticle Distances
within a Dilute Cloud of Particles

An approximation to the interparticle distance within a

cloud of particles in which the particles are randomly d_tL1

buted can be obtained in the following manner.

Consider a single reference sphere as shown in Figure 22.

At the closest approach of a second sphere to the first sphere

the center of the second sphere lies on a sphere of radius 2r.

Let us consider a portion of the cloud defined by the radius S_

and let this be termed the sphere of study. Now let the sphere

of study be divided into x spherical shells of thickness p.

The volume of the mth spherical shell is 4_(2r + mp) 2, The

volume of the sphere of study is 4_(2rtp) 2. Therefore the

probability that the second sphere center lies within the mth

shell is:

4_(2r + mp)2p

Pm = i=n (37)

_ 4_(2r + ip)2p

i=0

Now

i_n

V ,__ 2
_=_ l_ p ,,o],,me of shell that can

i=0 contain the particle center

Therefore

4 is d3)
= _

Pm = 3(d + mp)2
S 3 _ d 3

If we consider a certain volume of the cloud_ on the

average the number of particles in this portion of the cloud

is:

(38)

_V
__N,v = Vn _ V

P

where V is the volume of the cloud selected.
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If N is very large_ then to the first order of magnitude

any sample of cloud of volume V isolated from the cloud would

have N particles. As the absolute value of N decreased_ the

actual number within the isolated portion would fluctuate at

random. It is generally recognized that if N is approximately

25_ random fluctuations in the sampled volume are relatively

small.

If N is greater than 25 and the volume of the cloud

studied is the same as the study volume of the earlier deriva-

tion_ N/_ = Vs/V p. Since Vs/V p = S3/d3_

N S 3
(39)

- d3

Now let p = d/_ where _ is some convenient number. Then the

number of shells of thickness p in the study volume is:

S - d S - d

N1/3

By substituting for S

-iJ 

d_ and p in Equation 38

(40)

p _ 3 r 1 + m8 ] (41)

m _ [(N/_) lJ

for m = l-_f

By expressing all distances in fractions of a diameter_

an expression that is independent of the particle diameter has

been attained. (A check on the validity of the equation is

provided by the fact that all relationships are dimensionally

correct.)

Another general relationship that is useful in discussing

multiple interaction is the value of Pm in terms of Pl_ the

probability that the first shell is occupied. We note that

Pm_ 311 + m_Pl _ (n/s) - 1
I. - i]3[
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P
m _ 1 _ my (42)

P1 1 + _

With the aid of these general equations_ we can draw up a

descriptive array in two dimensions of a three-dimensional

cloud.

The relationships developed in this section apply to the

geometric relationship of particles in a cloud. They have not

been used intensively to study paint theory because the impli-

cations of Equation 31 were that in a paint film the particles

are too close for the cloud model to be valid. For instance,

it can be seen from Figure 19 that at the average distances

between particle centers to be expected in normal paint films

of about 40% by volume solids concentration, there is a high

probability that many of the surfaces of the particles will be

in contact. This physically resembles the situation that

occurs when the cloud is completely collapsed. The special

features of a collapsed cloud are loss of identity by indivi-

dual particles that are in intimate contact and high density of

scatterers per unit volume.

In view of these special features of a closely packed

pigment particle system, it was decided that a random walk

consisting of a series of discrete particle/energy encounters

was not an appropriate model for current high-pigment-density

paint systems. Therefore, studies of random walks through

dilute cloud systems were discontinued.
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VIII. MONTE CARLO STUDIES OF GRONTH IN SCATTERING CENTERS

AT VARIOUS CONCENTRATIONS OF PIGMENT

A. Simple Model of Monosized Cubic Piqment without Extender

i. Construction of the Monte Carlo Plot

The penetration of radiation into a dispersed particle

system and the probabilities of secondary scattering within

the system were previously discussed with specific reference

to clouds of particles (Report No. IITRI-C6018-13). For a

complete random-walk treatment of energy penetration through

a paint film comprising particles distributed randomly in a

vehicle_ the probabilities of the persistence of the forward

beam have to be known. When these probabilities have been

determined_ the energy flux at any surface perpendicular to

the direction of the original energy flow at a certain depth

can be described by the equation:

ET = E0 Px + ED

where

(43)

E T is the total energy

E 0 is the original energy in the parallel forward
beam

Px is the probability of persistence at depth x

E D is the diffuse energy flux.

Several problems arise in predicting the decay of the

forward energy beam. Although formulas for light-scattering

phenomena are useful in predicting the total energy removed

from the forward direction_ it is not easy (sometimes it is

impossible) to determine the area of the wave front disturbed

by the particle. Another major problem is prediction of the

statistics of persistence of the forward beam_ e.g._ the

number of particles that are effective scattering centers

and the probability that particles along the direction of

traverse will occur in line with particles nearer to the

source. The following experimental system was devised to

study this type of problem.
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Consider a rectangular grid. Along the x-axis let there

be N units_ and along the y-axis_ N units. Therefore_ withinx y
the major grid there are NxNy small squares. If we now consider

the path of a plane parallel beam of light passing through the

plane of the grid_ the z-axis perpendicular to the plane of the

grid represents the direction of travel. If an observer looks

along the z-axis and if dispersed particles are placed between

the observer and the source of light_ the observer is not aware

of the z coordinate of ths particles. The projected represen-

tation of the particles on the x-y plane represents their

appearance to the distant observer. Also_ the fraction of

open area seen by the observer represents the fraction of the

initial forward beam penetrating the system if diffraction

effects are negligible.

Therefore a series of experiments was conducted to simulate

the appearance of a dispersed monosize-particle system. A

piece of graph paper with 70 units along the x-axis and i00

units along the y-axis was selected. A pair of coordinates was

selected from random-number tables, and the appropriate square

on the grid was filled with black ink. This blacked-out square

represents the shadow of the particles. If the particles are

small_ the square represents their effective area. If the

particles are large, the square represents their geometric

shadow.

It can be argued that the use of square particles that

cannot partially overlap (only completely, or not at all) is an

artificial system. It is_ but the generalizations obtained

from this study are very informative and probably qualitatively

correct. After all_ the simple kinetic theory of gases is

artificial_ but it served as a useful tool in the development

of the physical sciences.

The exact meaning of "effective" depends upon the system

considered and is not defined further.
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In this study we consider particles larger than the wave-

length of light_ so that only the geometric shadow needs to be

considered. To simulate the light-obscuring behavior of parti-

_ appropriate number of particles is plotted on thecles_ _,_e

grid. Typical sets of coordinates selected from random-number

tables are given in Table 5. When coordinates occur for a

position that is already occupied_ this represents a particle

that is ineffective in destroying the forward beam. The fact

that an overlapped particle has occurred is recorded_ and

plotting continues. The number of particle coordinates plotted

represents the concentration of particles in the beam_ and the

number of spaces remaining represents the open area persisting.

Therefore_ a record of the two numbers simulates the efficiency

with which the forward beam is diverted.

Table 5

TYPICAL SETS OF COORDINATES USED IN MONTE CARLO SIMULATION

OF PARTICLE-SCATTERING PHENOMENA

x Coordinate y Coordinate

7 33

71 21

30 24

75 21

76 47

14 18

47 53

67 29

80 61

94 43

At measured particle concentrations_ the grid was examined

visually for squares that were touching_ and the number of

squares within any cluster of profiles is recorded in Table 6.

The total number of separate clusters was determined from the

data and is presented in Table 7 (separate single particles

were classed as a cluster). Figures 23 through 27 show the grid

at 20_ 30_ 35_ 45_ and 50% coverage. Figures 28 through 32 show

development of typical clusters with increasing particle coverage.
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Table 7

NUMBER OF INDEPENDENT SCATTERING CENTERS

Plotted Number of

Fraction Centers

0.020 136

.029 189

.039 239

.049 292

.058 325

.067 356

.075 385

.085 415

.093 445

.103 466

.112 477

.121 491

.131 509

.139 518

.147 529

.155 528

.161 536

.172 540

.180 534

.188 520

.195 523

.200 510

.210 501

.220 491

.230 481

.240 459

.250 443

.260 412

.270 403

.280 390

.290 374

.300 340

.350 220

0.400 123

75 IITRI-U6003-19_ Vol. 3



m - • • mm mln nnU_umImmmmmmm m I

[. mum___mmm m_a_, _ . • mu m milim• i
-,mr--. am • .m m LImam • _ _ _m mm.._mmmm_mmmmmr'nmm m mm_im J

I mmm m mmmm mmm_ m m mm_i mm- |m =I
m m mi m • • mw_.pm_ U -- "

my mm =" ,..-m .m= =
hyJmm (, _mmimm_ i m _mumm m mm_ _

'.._ • _ _ •• =m == li'. _:.",m" .-:

;-.-_.. : ;

m m n • m him nn_m m m mnnnnlm

Mmi_mmm-"_ m% m_ • _--.mm._,=m.._=== .m _ =m 1
m IN mm _iN_ _ • l_mm-i m -mmm
| -- mmFmm_mm m#m _m_mmm_mm • =.. mmr'm_mmm"_
i • • m_=m m ...-m. .-, r ir.','mm,.mTm_

" m.;mm• m m malm.ymmm-. m mmlm m_ : mmm m "_Z'mnmm_mmm

llmmmmmm _ -mmmmlm_mm _m mmmm_m .m mmmmm_

n_mm mm Immmmm • mm • m__m iN, __ • mm _m

"'m,m,,.m.:m"_'nl• mmm.' -","
aim .Tin _ m -mmmm#imm me_ _ _i_m mm m I• • nm_mmmUn mmm _rmm Urn.. m mm'=nl

mi-i mF • • mmmm m m. = mm =" m m= -I
|='==, _ =.__ m .=M. "=, -m=, =

. • J ..--.m @,m= mm • mmn .

_m_ • .mmP m=mm m m_...m,,.. ram"- _r=..'m=mm l" Y =i

==_..-".I,'-..'_.." ."-_.Ik :. '-. "..._IL" _' mm mm_" _ m m • m@
mm mm • • m_r _ __. ....<__t__.--_ •

Figure 23

MONTE CARLO BLOCK PLOTTING EXPERIMENT AT 20% cONCENTRATION
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Figure 24

MONTE CARLO BLOCK PLOTTING EXPERIMENT AT 30% CONCENTRATION
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Figure 25

MONTE CARLO BLOCK PLOTTING ED{PERIMENT AT 35% cONCENTRATION
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Figure 26

MONTE CARLO BLOCK PLOTTING EKPERIMENT AT 45% CONCENTRATION
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Figure 27

MONTECARLOBLOC_PLOTTINGEXPERIMENTAT50%CONCENTRATION
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Figure 28

CLUSTERS DEVELOPED AT 27% VOLUblE CONCENTRATION
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Figure 29

CLUSTERS DEVELOI-ED AT 28% VOLUME CONCENTRATION
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I Figure 30

CLUSTERSDEVELOPEDAT29%VOLU_CONCENTRATION
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Figure 31
CLUSTERSDEVELOPEDAT30%VOLU_,LECONCENTRATION
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Figure 32
CLUSTERSDEVELOPEDAT40%VOLUMECONCENTRATION
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The implications and importance of these data are dis-

cussed below.

2. Rate of Overlappinq within a Paint Film (Simulation of

Lambert-Beer Law)

Increasing the number of pairs of coordinates considered

for plotting on the master grid is equivalent to two physical

procedures. Either it is equivalent to studying the changes in

attenuation for a unit volume of the beam as the concentration

increases, or it is equivalent to studying the increased attenu-

ation caused by increasing the path length through a film of

constant pigment volume concentration.

Consider what happens when N pairs of coordinates are

selected; this is equivalent to considering the effect of N

particles. Let there be _ unit squares at the commencement of

the plotting experiment. Let Is be the number of particles that

have overlapped. The original energy of the beam is _-E_ where

E is the energy per unit square. The energy passing through

the film is given by !_ - (N -If) E. Let the incident energy

be denoted by I 0 and the transmitted energy by IT . Then:

IT_ (_ - N . _) = _ (44)

where _ is the fractional area remaining open.

It has been established empirically that the ratio of the

incident to the transmitted energy for light passing through a

dilute dispersed particle system is given by the Lambert-Beer

law. This law can conveniently be written in the form:

IT

log i0 exp (-KCL) (45)

where

K is a constant dependent on the size and the

geometry of the particle

L is the length of the beam's path

C is the concentration of a unit volume of the cloud.

The product CL represents the total number of particles in a

unit area.
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Therefore the Lambert-Beer law can be written in the form:

I T
log T -- A + N (46)

_0

where A is a constant.

If the simulation experiment is in agreement with empiri-

cally determined knowledge_ then_ from Equations 44 and 46_

log 8 = B + N (47)

where B is an arbitrary constant.

That is_ a plot of the logarithm of 5 against N should be

a straight line. The relevant information obtained during the

plotting experiment is presented in Table 8 and plotted in

Figure 33. These data follow the predicted pattern and demon-

strate that a Lambert-Beer equation for attenuation of a light

beam can be deduced from statistical reasoning alone.

3. Cluster Confiquration

For verification of the Lambert-Beer law_ the basic grid

of the Monte Carlo experiment can be considered to be an end-on

view through a paint film in which monosized particles are

dispersed. Now consider the plot to be a slice of a paint film

one unit thick and the particles to be located exactly in the

plane of the section. Again_ although this is an idealized

paint system_ the information derived from it is qualitatively

in accord with measured properties of actual paint systems.

For this interpretation of the plotting experiments_ the over-

lapped particles are regarded as particles that try to occupy

positions already filled. They are not considered in studying

the distribution of particles or the configuration of clusters

in the film section_ since they represent nonpermissible particles.

Therefore_ the important parameter is N'_ the number of

spaces occupied. It seems reasonable to regard the cluster as

the scattering unit. In fact_ it has generally been assumed in

paint technology that a badly dispersed pigment has low scatter-

ing efficiency because the effective pigment particles are

larger and therefore less effective in scattering light.
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Table 8

OVERLAPPEDPARTICLES IN MONTECARLO EXPERIMENT

Number of Pairs Overlapping Fraction Fractional
of Coordinates Particles Plotted Open Space

70 0 0.010 0.990

140 0 .020 .980

210 3 .029 .971

280 6 .039 .961

350 10 .049 .951

420 15 .058 .942

490 20 .067 .933

560 32 .075 .925

630 35 .085 .915

700 42 .093 .907

770 49 .103 .897

840 56 .112 .888

910 62 .121 .879

980 66 .131 .869

1050 76 .139 .861

1120 90 .147 .853

1190 105 .155 .845

1260 i13 .164 .836

1330 127 .172 .828

1400 145 .180 .820

1470 156 .188 .812

1540 172 .195 .805

1580 180 .200 .800

1669 199 .210 .790

1758 218 .220 .780

1841 231 .230 .770

1924 244 .240 .760

2012 262 .250 .750

2110 290 .260 .740

2210 320 .270 .730

2317 357 .280 .720

2417 387 .290 .710

2552 422 .300 .700

3075 629 .350 .650

3780 950 .410 .590

4368 1216 .450 .550

5065 1565 0.500 0.500
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]t we treat a cluster as the scattering unit_ we can calcu-

late S. Which Js the total number of scatterers in the paint

film at each volume concentration. We note that the volume

concentration and surface exposed are numerically equa]. The

data in this form are summarized in Table 6. In Figure 34 the

number of scatterers achieved is expressed as a fraction of the

number of particles placed in the section. This curve offers a

statistical explanation of the fact that a higher volume con-

centration of pigment dispersion yields a lower hiding power of

a given amount of pigment.

If, instead of plotting percentage scattering centers, we

plot the absolute number of scattering units per unit volume at

various volume concentrations, the data appear as shown in

Figure 35. Note that at 17% volume concentration there is an

absolute maximum of scattering centers and that further addi-

tions of pigment particles only serve to create larger clusters.

This suggests the possibility that there is an optimum pigment

volume concentration at _ich maximum numbers of scatters per

unit volume are achieved. A survey of the literature indicates

that this statistical reasoning may explain the experimentally

determined peak in the scattering power/PVC relationships of

paints discussed by several investigators (ref. 23-25).

If the growth of clusters of different size is plotted

(Figure 36) _ the reason for the drop in the scattering centers

achieved with rising concentration is confirmed; i.e. _ further

addition of particles creates bigger clusters and fewer scatter-

ing centers. Thus the number of doublets initially increases

at a rapid rate and then declines as further single particles

convert doublets into triplets.

Another cluster property of a randomly dispersed monosize

pigmented paint film was demonstrated by using this Nonte Carlo

plotting grid. The cluster size distribution as shown in

Figure 37 follows a loq-normal type of distribution, showing

that the scattering-center size distribution within a random

paint film is not that of the pigment itself, except at low

pigment volume concentrations, where cluster formation is rare.
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Figure 34

NUMBER OF SCATTERING CENTERS AT VARIOUS VOLUME CONCENTRATIONS

FOR RANDOMLY DISTRIBUTED MONOSIZED PARTICLES
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Figure 35

ABSOLUTE _IUI,IBEROF SCATTERING CE}FfERS PER UNIT VOLUI.iE
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SIZE DISTRIBUTION OF CLUSTERS FORMED
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Thus_ any experimental correlation of the scattering power

of a paint film and its scattering-center size distribution must

involve an experimental determination of scattering-center size

distribution within the paint film rather than of particle-size

distribution of the pigment before dispersion. In Figure 37

the indicated deviation from linearity for the larger clusters

is probably due to the statistically small numbers of clusters

of these sizes.

i
I
I
I
II

4. Edqe Effects

In the original investigation of the number of scattering

centers per unit area and in the experimental determination of

the size distribution of clusters_ the fact that clusters touch-

ing the boundary of the grid represented only partial clusters

that possibly extended beyond the edge of the grid was ignored.

For low equivalent volume concentrations_ i.e._ low density of

coverage_ the error involved in ignoring edge effects is negli-

gible. For high equivalent volume concentrations_ the error

can be considerable.

A simple technique for calculating __,_ _ct size _+_

bution of clusters is to eliminate from the data used to calcu-

late the size distribution all clusters touching the boundary

of the grid. This technique has the disadvantage that it rejects

information available in the simulated field of view. Theoreti-

cally_ one should be able to use partial clusters combined in

pairs_ using random-number tables to select mated pairs_ to

gain extra information on the cluster distribution. However_

preliminary study of the problems involved in the recombination

of partial clusters indicated that the preparation of an adequate

procedure would involve more work than could be justified within

the scope of the present investigation_ and this subject was not

pursued further. It should be noted that if many electron

micrographs of composite materials have to be evaluated_ the

derivation of statistical techniques for recovery of information

from the partial cluster distribution could be important because
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of the expense involved in the preparation of electron micro-
graphs. The corrected cluster size distributions were calcu-

lated by eliminating all clusters touching the grid boundary.

Techniques for calculating the true cluster density per

unit area were investigated. All the techniques evolved can

be illustrated by considering the 20% by volume grid (Figure 23).

The first technique considered was that of constructing

on the grid system a new boundary that did not cut any cluster.

Then the cluster density within the new boundary was calculated.

The line for the new boundary passed equidistant between clearly

independent whole clusters. A typical section of the boundary

is shown in Figure 38. The calculated cluster density per unit

of i00 squares using this new nonintersecting boundary was

7.18. The disadvantage of this technique is that information

is discarded. In the case of the simulated 20% area grid_ the

total area enclosed by the new boundary is still sufficiently

large that the number of clusters on which measurements are

carried out is still relatively high. However_ the usual type

of electron micrograph would not contain such a high number of

clusters_ and the nonintersecting boundary area may reduce the

information used to a relatively low level.

Another method for correcting for effects due to cluster

interception by the boundary_ and one that does not appear to

have been described before_ is to place small_ known perimeters

on the simulated field of view and measure the fluctuations in

cluster density and cluster interception. Since cluster

boundaries and cluster density vary because of the combined

effect of random independent variables_ both quantities should

be distributed according to a Gaussian distribution.

To investigate the fluctuations in boundary interception

and cluster density_ the values of these two quantities in

square areas of i00 units were investigated. Measurements were

carried out on 90 squares. A typical set is shown in Figure 39.
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CONSTRUCTION OF NEv{ BOUNDARY FOR 20% 14ONTE CARLO GRID PLOT
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Figure 39

SCATTERING CENTERS IN A TYPICAL SUBUNIT OF i00 SQUARES
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Consider the subsquare ABCD containing i00 units of area.

This square apparently contains i0 clusters_ but_ in fact_ two

of them are fractions of the same cluster intercepted by the

boundary. This square was chosen to demonstrate this possibil-

ity. Only four false counts of this kind were encountered in

the 90 squares investigated_ and this has a negligible effect

on the number of clusters per square. Therefore_ a square such

as ABCD would be treated as containing nine clusters with two

of the clusters crossing the boundary.

In Table 9_ the distributions of the combined number of

clusters and interceps are given. These are plotted on Gaussian

scales in Figure 40. From this figure it can be seen that the

expected value of the cluster number is 9 and the interception

frequency is 3.8.

The fact that a cluster straddles the perimeter means that

it is t on the average t counted twice. Therefore_ the false

count represented by particles crossing the boundary is half

the interception frequency. Therefore_ the calculated frequency

of clusters for i00 unit squares is:

9 3.8 7
2

Thus_ a simple technique for estimating the false count is to

count the numbers of clusters at the boundary and subtract half

this quantity from the total number of clusters. This is the

method used to correct the estimates of the number of indepen-

dent clusters per unit area in the analysis of the Monte Carlo

plots considered here.

The cluster size distribution at 0.3 fractional coverage

has been determined experimentally in two cases: (a) not

correcting for and (b) correcting for clusters touching the

boundaries of the plot. The data are presented in Table i0 and

Figure 41. The corrected distribution is still essentially log-

normal_ and the largest correction is associated with the larg-

est clusters. This is to be expected_ since a large cluster has

a greater probability of intercepting the edge of the plot than

a smaller cluster.
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Table 9

COMBINEDCLUSTERDENSITIES AND INTERCEPTION DENSITIES
OF 90 SUBSQUARESOF A TYPICAL MONTECARLOPLOT

OF 0.2 FRACTIONAL AREA

FLUCTUATIONS IN CLUSTER NUMBERIN SUBSETSOF i00 SQUARES

Number of
Clusters

(90 Sets Examined)

Number of Sets

Containing Stated

Cluster Number

Percent Occurrence of

Events Greater Than or

Equal to Stated Number

5 4 100

6 6 95

7 13 89

8 23 74

9 20 49

i0 12 27

ii 8 13

12 - -

13 4 4

FREQUENCY OF CLUSTER INTERCEPTIONS BY PERIMETER BOUNDARY

(Perimeter is That of Square Containing I00 Subsquares)

Number of

Interceptions

Number of Perimeters

with Stated

Interception Number

0

1

2

3

4

5

6

7

8

3

l0

17

17

17

15

4

6

1

Percent Occurrence of

Interceptions Greater Than

or Equal to Stated Number

i00

97

85

67

48

29

12

8

1
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NU_IBER DISTRIBUTION OF CLUSTER _D INTERCEPT EVENTS

i01 IITRI-U6003-19_ Vol. 3



Table I0

CLUSTER DISTRIBUTION AT 0.3 FRACTIONAL CONCENTRATION

Number of Including Cluster Excluding Cluster

Units in Cut by Edge Cut by Edge
Cluster of Plot of Plot

1 121 Iii

2 56 46

3 38 33

4 23 21

5 14 ii

6 9 8

7 S 6

8 13 12

9 8 8

I0 6 5

]I 4 3

12 3 3

13 3 3

14 1 0

15 5 4

16 4 3

17 3 0

18 2 ]

19 0 0

20 0 0

21 0 0

22 4 3

23 4 3

24 0 0

25 1 0

26 1 1

27 0 0

28 0 0

29 ]. l
30 1 0

31 0 0

32 0 0

33 1 1
34 0 0

35 1 1

36 0 0

37 0 0
38 0 0

39 0 0

40 I 1

41 0 0

42 0 0

43 0 0

44 0 0

45 0 0

46 0 0

47 1 1

48 0 0

49 0 0

50 0 0

51 1 1

52 0 0

53 [ i

54 0 0

55 0 0

5b O 0

57 1 0

58 0 0

59 0 0

50 0 0

61 0 0

62 0 0

63 0 0

64 1 1

65 0 0

66 0 0

67 0 0

68 0 0

60 0 0

70 0 0

71 0 0

72 1 1

• °
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ABSOLUTE NUIvIBER OF SCATTERING CENTERS PER UNIT VOLU_
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A plot of the total number of scattering centers against

fractional concentration is shown in Figure 42 for edge-corrected

and uncorrected plots. Since correction in this case is essen-

tially exclusion of intercepted clusters_ it is to be expected

that the total number of scattering centers at a given concen-

tration will be reduced.

B. Simple Model of Noncubic Piqment without Extender

In the simulation experiments reported in Section VA_ the

growth of cluster formation was simulated in two dimensions by

using a two-dimensional grid-plotting experiment. Although the

validity of the quantitative data on cluster formation deduced

from these experiments is limited by the fact that clusters are

growing in three dimensions_ the qualitative deductions (such

as the presence of a maximum in the total number of scattering

centers) appear to correlate with known empirical data on the

changes in opacity of a paint film at various solids concentra-

tions.

A criticism of the simple cubic-pigment-particle model used

in the first Monte Carlo experiment is that the particle shape

assumed is too symmetrical and that results from the plotting

experiment are not valid because real pigment particles have

asymmetrical shapes. To explore the implications of this

possible criticism_ the following plotting experiment was

carried out. A square grid containing 70 x 70 square sub-

divisions was marked out. On this grid particles consisting

of two squares were plotted by using three random numbers.

The first two random numbers selected ranged between 1 and

70 to find a location on the plotting grid. The third random

number was a single digit. If it was even T the particle was

plotted with its left side lower corner on the coordinate and

its longer side lying horizontally. If it was odd_ the left

side lower corner was agin laid on the selected coordinate but

the long side was laid vertically.
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In Figures 43 through 46 the resultant fields of view at

approximately 5_ l0 t 15_ and 20% coverage are given. The exact
percentage is shown in the diagrams. The reason that cluster
formation was not determined at exact fractional coverages was

that these diagrams were prepared by plotting several 5%

covered plots on translucent paper. (On a plane surface each

5% diagram has 7 independent positions. Therefore_ if 4 dia-

grams are prepared_ 42 different 10% diagrams can be prepared.

However_ the overlap losses vary from set to set.)
Many sets of 15 and 20% coverages can be drawn. In this

research we studied one combination for each percentage cover-

age by using 5 diagrams. Apart from the advantage of the

possible number of combinations using several 5% covered dia-

grams_ these relatively low-density systems are easy to plot

compared to the construction of the densely populated system

at_ for example_ 20% coverage. We changed from a rectangular

to a square plotting area in order to facilitate superposition-

ing of the separate grids.

The total number of scattering centers versus percent

coverage is plotted in Figure 47. It will be observed that the

growth of clusters again causes the number of independent
scattering centers to reach a maximum in the region of 20% by

volume. Comparison of Figure 47 with Figure 42 shows that the

maximum shifted to slightly higher concentrations for the

particles with a shape factor of 2:1. This phenomenon may not

be real in the sense that statistical fluctuations between

repeat Monte Carlo plotting experiments could demonstrate that

the difference between it and 20% for the two differently

shaped particles could arise purely from chance mechanisms.

Figure 48 presents the growth of the different sized

clusters in the plotting experiment using particles of 2:1

shape factor. The results of the plotting experiments with the

2:1 shaped particles have important implications for paint

reflectance studies.
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5% COVERAGE BY PARTICLES HAVING 2:1 SHAPE RATIO
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Figure 44

10% COVERAGEBY PARTICLES HAVING 2:1 SHAPE RATIO
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14.8_ COVERAGE BY PARTICLES HAVING 2:1 SHAPE RATIO
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ABSOLUTE NUMBER OF SCATTERING CENTERS PER UNIT VOLU_
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AT VARIOUS VOLUME CONCENTRATIONS

FORMED FROM PARTICLES HAVING 2:1 SHAPE RATIO
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First of all_ irrespective of the significance of the small

shift from 17 to 20%_ these experiments confirm that cluster

formation imposes a limit on the number of scattering centers

achieved and that 20% by volume is the order of magnitude for

pigment concentrations beyond which there is a loss in effective

scattering power.

Secondly_ the concentration at which the number of indepen-

dent scattering centers starts to fall off is approximately the

same for both the square model and the 2:1 particles and can be

understood from examination of the structure of Figures 21

through 24 and the following qualitative reasoning. As long as

the spaces between particles is several particles wide_ the

chances of a particle 2 diameters wide touching another particle

is not much higher than the chances of a particle 1 diameter

n
wide. For instance_ consider a sphere of _-dlameter radius

such that if a small particle is placed within this sphere it

can be considered to touch another particle if it at least

touches the surface of the sphere. In one sense_ the sphere

can be considered an abstract model of an unpopulated region

within a pigmented material_ and in the following discussion it

will be referred to as the location sphere. Now the chance

that a center of a particle of diameter d will be located within

the larger sphere so that it will touch its surface or extend

beyond it is the ratio:

i_33 1 3 3
_TrC* n - _d (n-l)

Pd = 1 3 3 (48)

_d n

Thus:

Pd = 1 - <l-l13n

It is important to notice that this relationship does not

involve d_ and this is why the relative locations within a

paint film are not a function of particle size.

If we now consider the particle that has a shape factor of

2:1_ this can be located in a larger volume in space and still
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protrude through the surface of the location sphere to make

contact with a particle to form a cluster. For particles of

shape factor 2:1 with their long axis lying along the radius of

the location sphere_ the probability of being in a position to
form a cluster is:

3

Pd(2:l) = 1 - i-_'

However, only a fraction of the particles will lie along the

radius of the location sphere_ and the probability of particles

occupying all possible orientations within the location sphere

will be:

3

Pd(2:l)

where a is some number between 1 and 2.

From comparison of the probabilities expressed in Equations

48 and 49 it can be seen that the probability of cluster forma-

tion for the noncircular particle is higher than that for the

spherical particle (from spatial considerations evaluated in

isolation from other factors influencing cluster formation).

It can also be seen that the difference between them is small

when n is large but increases rapidly as n approaches _.

The_e is_ however, a competing factor_ which tends to

reduce the probability of cluster formation for particles of

shape factor 2:1 compared with particles of i:I symmetry. For

a given mass of particles_ the number of points in space at

which a particle can occur for systems containing 2:1 particles

is half that for systems containing i:I particles. This means

that the effective value of n to be used in Equations 48 and 49

is larger for particles of 2:1 shape factor than for i:i

symmetrical particles at a given volume concentration. There-

fore_ we have two competing factors -- one tending to reduce

cluster formation and one tending to increase it for particles

of 1:2 shape factor. The competition between these two factors

could offer a qualitative explanation of the shift of the peak

for the maximum number of scattering centers toward the higher
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volume concentrations for 2:1 shaped particles_ should subse-

quent investigation confirm this shift.

This possible shift toward higher concentrations for

achieving maximum number of scattering centers is not an argu-

ment for trying to achieve pigment particles with 2:1 shape

factors_ because the number of scattering centers schieved for

a given mass of particles is always higher for particles of i:i

symmetry. For instance_ if both types of particles were mea-

sured by sieving techniques_ in which particles are classified

by their minimum diameter_ both types of particles would have

the same measured particle size yet one set of particles would

have a much higher number of scattering centers per unit mass.

This suggests that it may not be possible to solve some prob-

lems associated with optical properties of paint films until

quantitative methods of shape analysis are developed.

Thirdly_ at the end of the discussion of the relation

between Mie theory predictions of the scattering power of

single particles and the optical properties of paint films

(Section II_ _ it wax pn_u]_e_ _h_* _+ m=y _= =_ .... _ ....... to

achieve maximum pigment surface per film thickness provided

that the individual particles are still effective scattering

centers. It might be argued that 2:1 or higher shape factors

might be advantageous from the point of view that they have

more surface per mass than a sphere. Again_ this is a super-

ficial argument and has no real meaning unless particle size is

defined very carefully.

For example_ consider the simple cubic model and the

simple particle of 2:1 shape factor formed by fusing two cubes

together over one surface. If the cube and the particle formed

by fusing together have the same particle size_ which they

I
I

I

This is not possible for normal pigment particles at the

current stage of size-analysis technology_ but the fact that

we are discussing a set of hypothetical measurements does

not affect the validity of the points being made concerning

particle size and paint film properties.
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would have from sieving techniques_ then the particle formed
from two cubes has less surface than the two cubes from which

it was formed_ although it has more surface than a particle of

the same mass. Thus_ when one dimension is identical for the

two particles_ the cubical particles have more scattering

centers and more surface area per unit mass than do the particles

of 2:1 shape factor. This apparent paradox arises from the fact

that the property of interest is normally the surface area per

unit mass, whereas in discussing the properties of pigment

particles the property of interest is surface area for a given

particle size_ which has to be defined carefully. Again, this

discussion underlines the need for knowledge of shape factors

in conjunction with accurate and well-defined particle-size

analysis.

It is possible to discuss the possible influence of dis-

persion on the optical properties of a paint film by using the

statistical considerations outlined in the foregoing paragraphs.

Consider a monosized pigment. If the particles are not well

dispersed in the paint film_ this is equivalent to saying that

the units of pigment to be dispersed are not single particles_

but groups of particles containing 2_ 3_ 4 up to n particles.
A cluster of two particles can be considered to be a particle

of shape factor 2:1. The case of a cluster containing a number

of particles is more complex_ because of the possible configu-

rations they can achieve in space. However_ all clusters in

fact represent basic units of increasing particle-shape factor
as the cluster size increases.

From the statistical considerations given above_ one would

anticipate that in a poorly dispersed pigment the concentration

of solids for maximum scattering centers is displaced toward

the higher concentration but tha_ the total number of scattering

centers is low. Therefore, increasing the degree of dispersion
should increase the overall opacity and should shift the maximum

of the opacity/concentration curve toward lower concentrations.

This conclusion is based on tentative postulations and very
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simple models_ but its implications are sufficiently interesting

to warrant investigation. If the conclusion proves to be a

real description of the properties of a paint film_ an inter-

esting corollary to the hypothesis is that the location of the

maximum in the concentration/maximum scattering centers curve

will always be a function of the shape factor of a well-dispersed

pigment.

It is pertinent at this point to discuss the relevance of

the above speculations based on statistical reasoning. Even if

all of the speculations proved to be irrelevant_ this theoretical

study has at least indicated the possible phenomena occurring

within a paint film. Knowing these possible phenomena_ we can

design experiments efficiently so that the importance of the

possible machanisms affecting the opacity of paint films can be

either substantiated or eliminated.

C. Simple Model of Monosized Cubic Piqment with Extender

A simple modification of the original Monte Carlo plotting

experiment can be used for exploring the possible role of

system in which equal quantities of equally sized pigment and

extender particles are randomly dispersed. To simulate such a

system we carried out the following transformations.

(a) A transparent piece of graph paper was placed on top

of the 20% concentration plotted system. In a random-number

table odd and even numbers occur equally. Therefore each

particle was marked through onto the new graph paper in con-

junction with a random-number table -- _ for even numbers and

o for odd numbers. The result represented the system that would

be obtained for equal numbers of pigment and extender particles.

The _ denotes pigment and the o extender particles. The

fractional concentration of both extender and pigment was 10%.

The resultant transformation_ corresponding to 790

particles plotted_ is shown in Figure 49. The original data

(for the pigment alone_ Table 6) were obtained when 784 particles

were plotted.
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Figure 49

SIMULATED PIGMENT-EXTENDER SYSTEM: 10% PIGMENT_ 10% EXTENDER
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The number of particles plotted in each case is suffi-

ciently close for comparison of the number and the type of

scattering centers achieved for a fixed volume concentration

with and without extender particles. For direct comparison_

Table ii lists the cluster distribution for pigment plus

extender (abstracted from Figure 49) and that for pigment alone

(from Table 6).

Table ii

DATA ON CLUSTER FORMATION AT 0.i VOLUME FRACTION

OF IDEALIZED MONOSIZED PIGMENT

DISPERSED WITH AND WITHOUT THEORETICAL EXTENDER

Number of ClustersNumber of

Particles_ Number of Units in Cluster

Piqment N' 1 2 3 4 5 6 7 8 9

Number of

Independent

Scattering

Centers_ S

Alone 784 315 86 43 15 7 6 4 - 1 477

Plus 790 387 75 45 15 6 1 2 1 - 532

extender

t
4
t
I
t
!
i

(b) Plots having 30% pigment and 5% and 10% extender

respectively were constructed as follows. By using pairs of

coordinates chosen from random number tables_ simulated extender

particles were placed in the 30% concentration plot (Figure 24).

In the event the location of an extender particle coincided with

a square occupied by pigment_ the pigment particle was removed

and a record made of this event. After the required concen-

tration of extender had been placed in the grid_ the displaced

pigment particles were relocated by random coordinates in free

spaces of the plot. These plots are shown in Figures 50 and 51.

For direct comparison of cluster growth_ Table 12 lists

the cluster distribution for the pigment plus extender

(abstracted from Figures 50 and 51) and that for the pigment

alone (from Table 6).
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Figure 50

SIMULATED PIGMENT-EXTENDER SYSTEM: 30% PIGMENT_ 5% E_rENDER
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Figure 51

SIMULATED PIGMENT-EXTENDER SYSTEM:

121

3_ PIGMENT_ 10% EXTENDER
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Table 12

DATA ON CLUSTER FORMATION AT 0.3 VOLUME FRACTION

OF IDEALIZED MONOSIZED PIGMENT

DISPERSED WITH VARIOUS CONCENTRATIONS OF THEORETICAL EXTENDER

Number of

Extender Number of Number of Clusters Independent

Conc._ Particles_ Number of Units in Cluster Scattering

f_ N' 1 2 __3 _ 5 6 7 8 9 Centers_ S

0.0 2100 121 56 38 27 14 9 6 13 8 338

0.05 2100 125 51 37 25 18 9 i0 12 7 351

0.i 2100 132 50 33 18 17 ii 14 13 5 350

The data in Table ll show that when 10% extender is present

in equal quantities with the pigment_ (a) there is an overall

increase of 12% in the number of scattering centers achieved_

(b) there is a 23% increase in the number of single-particle

centers (these are probably the most effective in scattering

the light) _ and (c) the overall number of scattering centers is

as high as the total number achieved at any higher concentration

with the pigment alone (Figure 35).

When cluster distributions for both plots (with and without

extender) are plotted (Figure 52) _ both obey the log-normal

distribution. Figure 52 also shows that when an extender is

present_ there is less probability that the larger clusters

will occur.

On the other hand, when 10% extender or less is present

with 30% pigment_ (a) the increase in number of scattering

centers is only 4% and (b) the increase in number of single-

particle centers is less than 10%. These data are substan-

tiated by Figure 53_ which shows that at these relative con-

centrations the extender is not efficient at preventing the

buildup of large clusters.
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This simulation experiment strongly suggests that the

extender has a definite role in light-scattering phenomena_

i.e._ in preventing pigment clusters by mechanical competition

for possible positions. An extention to this conclusion is

that most efficient use of pigment for scattering is to be

gained from the use of a maximum quantity of free extender to

compete for cluster sites.

Note than an encapsulated pigment would carry its own

"built-in" extender; i.e._ it would have a region surrounding

it that another pigment particle could not occupy. Thus it

could be a very efficient light-scattering center in a paint

film. This aspect is discussed in Section D.

I
|

I
!
!
!
!

D. Partial Encapsulation of Piqment Particles

The role played by an extender in the light-scattering

behavior of a paint film was discussed in Section C. It was

concluded that the extender mechanically competes with the

pigment for location within the film and thus depresses the

buildup of clusters of pigment particles.

±_ all pigment particles were .... i_i .......... i_

with extender before they were randomized in the vehicle_

formation of pigment-particle clusters would not be possible.

Since it may not be feasible on economic or practical grounds

to fully encapsulate each pigment particle_ consider the

advantage to be gained from partial encapsulation of pigment.

Consider the simple two-dimensional Monte Carlo plotting

experiment described in Section A m in which square particles

are randomly placed upon a flat grid. Suppose each particle

is modified so that one face is coated with extender without

altering the size or shape of the composite particle.

The possible configurations of two such particles are

shown diagramatically in Figure 54. This figure shows that

the probability of two cubes touching with a layer of extender

between the pigment is 7/16_ i.e._ 0.437. Thus_ approximately

half the doublet clusters wil_ be broken up into single

scatterers by encapsulation of only 1 face in 4.
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Figure 54

POSSI BLE CONFIGURATIONS
OF TWOPARTIALLY ENCAPSULATEDPARTICLES
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Figure 55 shows some of the possible configurations as a

third particle is added to the doublet shown in Figure 55. In

this case the probability of having an extender layer between

at least two particles is 0.430.

As the clusters are allowed to grow_ the number of

possible configurations increases very rapidly to the point at

which it becomes impractical to predict the probability of the

pigment being separated by the extender layer. However_ the

effect of one-face coated particles on complex-cluster develop-

ment has been demonstrated by using the clusters found in the

20% Monte Carlo plot (Figure 23). Each particle of a cluster

was assigned a coated face by using random numbers 1 to 4 to

represent the four faces of the square particle. Figure 56

shows the encapsulated cluster profile and the cluster devel-

opment that would have resulted had partially encapsulated

particles (i face in 4) been used. For all six clusters

examined_ the use of partially encapsulated pigment would have

produced a larger number of smaller clusters. In fact_ the

6 clusters studied produced 33 smaller clusters.

The discussion has so far dealt entirely with a two-

dimensional system using square particles. The transition to

three dimensions is not simple and cannot be predicted from the

above discussion. However_ a study of the cluster break-up

when the probability of a particle face being encapsulated is

1 in 6_ thus simulating a three-dimensional cubic particle_ has

shown a similar significant decrease in cluster size and

increase in cluster number. Figure 56 shows that 1/6 encap-

sulation of the particles in the clusters previously examined

produces 19 smaller clusters.

The foregoing discussion strongly suggests that a signif-

icant increase in the number of dependent pigment scattering

centers developed in a paint film of given pigment volume

concentration can be achieved by less than complete encap-

sulation of pigment with extender.
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Figure 55

SOMEOF THE POSSIBLE CONFIGURATIONS
OF THREE PARTIALLY ENCAPSULATEDPARTICLES
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Figure 56

CLUSTER DEVELOPSLENT USING p/dkTI/dA_Y ENCAPSULATED PIGSIENT
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It appears that a relatively inexpensive method of partial

encapsulation would be to suspend the pigment randomly in a thermo-

setting resin of the same refractive index as the vehicle to be

used in the paint film. After the resin has set_ the system

would be milled to a predetermined size range to give roughly

shattered pigment/resin composite particles. Provided the

pigment/resin bond and the pigment and resin shatter strengths

are all comparable_ it is anticipated that the method will

yield a partially encapsulated pigment suitable for use in

highly reflecting coatings.

i
!
I
!
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|
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• IX. RANDOM SCREEN MODEL FOR STUDYING PENETRATION OF LIGHT

THROUGH PAINT FILMS

i

I

I

:11

I

I

A. Introduction

If a section is taken through a paint film_ it can be

considered to define a screen in which the pigment cross section

can be regarded as relatively opaque areas distributed at

random in a transparent slab of material. On this basis_ we

decided to study the possibility of treating the transmission

of radiation through a paint film as a series of radiation/

screen encounters. The properties of the screens would be

related to the pigment volume concentration of the paint film.

It is possible to consider events at each screen to be indepen-

dent of previous encounters_ since diffraction effects would

diffuse the light energy between encounters. As a first stage

in developing this statistical model_ the properties of random

screens were studied.

B. Physical Properties of Random Screens

The first property of randomly imposed screens is the

residual straight-through area_ since _L_S can be used to

deduce important facts concerning the persistence of an inci-

dent plane parallel beam of light penetrating a paint film.

Consider an area, A t within which two laminae_ or areas

a I and a2_ can be pleced at random (Figure 57). To define

randomness in this situation_ the position of the centroid of

each subarea (a I and a2) is specified by x and y coordinates_

which are selected by using random-number tables. A fixed

direction on the laminae permits random orientation; i.e._ all

directions are equally probable. If the whole of the area. A.

is covered with N points equidistant from each other, the

number of points within a I is:

a 1

N. X-

The number of points within a 2 is:
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a2

N- X-

If one point within A is selected_ the chance that it lies

within either area is:

a I a 2
-- and --
A A

The chance that one point will lie within both areas simul-

taneously is:

al'a 2

A 2

-- Area _ A

Figure 57

RANDOM LAMINAE WITHIN A DEFINED AREA

If many events are considered_ the average number of points

that will lie in both areas is:

al'a 2

N A2

Therefore_ the average overlap area over many events is:

al'a 2

A? A

If A is taken to be unity and a I and a 2 are expressed as frac-

tions of unit area fl and f2_ the fractional area of overlap for

many events is fl-f2.
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This discussion has proceeded in terms of many super-

positions of two areas within a test area. Mathematically_ an

extended screen with many random apertures of average fractional

area f _i -^_i_ F_au_ above another screen_ contains many random

apertures of average fractional area f2_ which is equivalent to

many random superpositions of the two isolated areas.

Physically_ the difference is that in the case of the two

screens the average is for many events distributed in space_

while in the case of the two areas the average is for many

events distributed in time. Therefore_ the average residual

exposure for two random screens superimposed should be fl-f2.

Similarly_ for a series of n screens it should be fl-f2-f3...fn.

Two regular screens superimposed at random should be a

close approximation to random screens placed on top of each

other. Therefore_ the following experiment was devised to test

the reasoning given in the foregoing discussion. Consider the

screen shown in Figure 58. This screen was chosen to fit the

proportions of the wire openings in a 325-mesh screen. The

width of the closed portions to the openings is 36/44. The

basic unit of the screen is an open portion 44 units square_

with opaque portions 36 by 80 units along two sides. Therefore_

the fractional opening in the screen is:

442
0 303

802 - .

For two screens superimposed_ the open area is 0.092_ and for

three screens_ 0.028.

A master circular grid (Figure 58) containing 325 whole

square openings was constructed on paper. The opaque portions

were covered with India ink_ and the openings were cut out with

a scalpel. This master was copied by Xerography. The master

was then superimposed at random on this copy_ and the combina-

tion again copied by Xerography. The openings common to both

screens could be seen clearly on this copy.
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Figure 58

BASIC SCREEN (OPEN AREA_ 0.303)
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To measure the open area_ the portions of the disk

corresponding to the common open area were cut out with a

scalpel. The loss in fractional weight of the disk represents

the fraction of open area remaining. The experiment was

repeated five times. The disks obtained by the two super-

positionings are shown in Figures 59 through 63.

The result of superimposing the original master screen

randomly on one of the double screens is shown in Figure 64.

Again_ the common open areas of all three screens were esti-

mated by cutting away the appropriate portions of the

reproduced disk and measuring the loss in weight. Similar

experiments were carried out to simulate four_ five_ and six

superimposed screens. Typical simulated systems for three_

four_ and five screens are shown in Figures 64_ 65_ and 66.

The experimental results are summarized in Table 13. The

data show that the predicted and measured straight-through

fractional areas agree within the limits imposed by experi-

mental error and statistical fluctuations. This agreement

indicates that the penetration of a light beam into a pigment

can be predicted by considering the random screens formed by

the pigment in the paint film.

It can be shown that the area ratio of solid to space

exposed upon sectioning a composite body is the same as that of

the solid to space in the composite body (ref. 26). Consider

the general case of _ percent solids. After n equivalent

screens_ the percentage area aveilable for straight-through

transitions is (i-_) n. Data for a few values of n and _ are

given in Table 14. It can be seen that for a paint of usual

pigment volume concentration_ the forward beam would not

persist for more than a depth of a few pigment diameters even

if diffraction effects were ignored. The spreading of the beam

due to diffraction will enhance the decay of the forward beam.

The general conclusion is that for penetration of a light beam

into a normal paint film_ the forward-directed beam is diverted

after a depth of a few pigment diameters.
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Figure 59

TWO RANDOMLY SUPERIMPOSED SCREENS (OPEN AREA_ 0.098)
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Figure 60

TWO RANDOMLY SUPERIMPOSED SCREENS (OPEN AREA, 0.i05)
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Figure 61

TWORANDOMLYSUPERIMPOSEDSCREENS(OPENAREA_0.092)
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Figure 62

T_K3 RANDOMLY SUPERIMPOSED SCREENS (OPEN AREA_ 0.i01)

!

I
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Figure 63

TWORANDOMLYSUPERIMPOSEDSCREENS(OPENAREA_0.102)
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Figure 64

THREE RANDOMLY SUPERIMPOSED SCREENS (OPEN AREA_ 0.03)
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Figure 65

FOUR RANDOMLY SUPERIMPOSED SCREENS
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Figure 66

FIVE RANDOMLY SUPERIMPOSED SCREENS
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Table 13

AVAILABLE STRAIGHT-THROUGH PATHS

IN RANDOMLY SUPERIMPOSED SCREENS

(Open Space in Original Screen_ 0.303)

Number of

Screens

Superimposed

Straight-Through
Fractional Area

Predicted

2 0.092

3 0.028

4 0.008

5 0.002

Measured

0.092

0.102

0.098

0.101

0.105

0.030

0.028

0.012

0.011

0.007

0.010

0.008

0.006

0.014

0.003

0.001

0.001

6 0.0006 Too small

to measure

Table 14

FRACTION OF SPACE AVAILABLE FOR STRAIGHT-THROUGH PASSAGE

Number of Equivalent Screens
3 4 5 6 7

0.50 0.125 0.062 0.031 0.015 0.007

0.40 0.216 0.130 0.078 0.047 0.028

0.30 0.343 0.240 0.168 0.118 0.083
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C. Development of Random Screen Model

In the traverse of a multitude of photons through a paint

film_ the energy flow can be depicted pictorially as in

Figure 67. It is pertinent to note that the arrows do not

depict rays_ but only the directional flow of energy. The use

of arrows to depict energy directions and to symbolize encoun-

ters of energy with boundaries between media of different

refractive indices is consistent with the procedure followed

in advanced texts on wave optics theories. If it is preferred_

the same type of reasoning based on the use of Huygen's

secondary wavelets in the diagram would lead to the same result.

It is not even necessary for the events shown to have a

physical reality if they are adequate representations of energy

flow_ just as it is not necessary for a 3/4 child to be born

before we can describe the average American family as having

1.75 children.

The situation shown in Figure 67 summarizes the information

that at encounter 1 some of the energy is reflected and some

transmitted. The rpflpcted portion proceeds directly to

encounter 2. The energy transmitted into the second medium at

encounter 1 proceeds to encounter 3. Again_ at encounters 2

and 3 there are partial reflection and transmission. The

further sequence of events is suggested by the unbroken lines

drawn in Figure 67.

Symbolically_ the encounters of Figure 67 can be repre-

sented as shown in Figure 68. At encounter 1 the energy is

separated into two parts_ a reflected portion_ R_ and a

transmitted portion_ T. Each of these has associated with it

a set of characterizing parameters: _ the directional

function; Q_ the phase change with respect to the initial beam;

S_ a function of the absorption factor of the medium through

which the energy is traveling and of the optical path length_

P_ between encounters_ and I{, the fraction of energy reflected

or transmitted.
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Figure 67

TWO-DIMENSIONAL REPRESENTATION

OF ENERGY ENCOUNTERS IN A PAINT MATRIX
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SYMBOLIC REPRESENTATION OF ENERGY/BOUNDARY ENCOUNTER
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Now consider the energy incident on the surface to consist
of random bursts of wave trains. As each wave train tries to

penetrate the matrix, the orientation of the boundaries is

completely at random. Therefore_ all orientations are equally

probable with respect to the incident direction. If a

sufficiently large number of events is considered_ it would
seem reasonable to assume that half of the encounters reflect

the energy forward and half backward. The reflection factor

for determining the energy partition will have some average

value taken over all individual values for all possible orien-

tations. Let us assume that its value is d. Throughout the

paint matrix the optical path length between energy/boundary

encounters will vary between zero and an upper limit imposed

by the characteristics of the paint matrix.

However, if enough events are considered_ it would seem
reasonable to assume that there is an average path length_ d_

between encounters. Again_ the number of events experienced in

a sequential path will vary for a given sequence_ but for a

given paint film there will be some average characteristic
number of events that can be used for averaging the penetration

of energy over many sets of events. If we consider the effects

of many incident wave trains of the same frequency traveling

through the paint matrix, the phase relationship between the

many waves passing through a point chosen within the matrix

will be distributed at random; i.e._ all phase angles between

0 and 27 will be equally possible.
Consider first the simple case in which all amplitudes are

equal. Let the amplitude of a wave be a_ and let there be n

waves passing through a point in space. If these motions were

all in the same phase_ the resultant amplitude would be na and

2 2 2
the intensity n a , or n times that of one wave. However.

the phases are distributed purely at random. If the graphic_]l

method of compounding amplitudes were used, we would obtain a

picture like that in Figure 69. The phases _l_ _2_... take

arbitrary values between 0 and 21;.
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Figure 69

RESULT OF 12 AMPLITUDE VECTORS

DRAWN WITH THE PHASES AT RANDOM

149 IITRI-U6003-19_ Vol. 3



The intensity due to the superposition of such waves can
be determined by the square of the resultant A. To find A2_

we square the sum of the projections of all vectors a on the
x-axis and add the square of the corresponding sum for the

y-axis. The sum of the x projections is:

a(cos _i t cos _2 + cos a3 ÷ "'" + cos a n )

When the quantity in parenthese is squared_ terms of the form

2
cos a I and others of the form 2- cos a I- cos _2 are obtained.

When n is large_ the terms 2- cos _i" cos _2 might be expected

to cancel out_ because they take both positive and negative

values. In any one arrangement of the vectors this is far from

true, however. In fact_ the sum of these cross-product terms

actually increases approximately in proportion to their number.

Thus_ we do not obtain a definite result with one given array

of randomly distributed waves.

In computing the intensity in any physical problem_ we are

always presented with a large number of such arrays_ and we

wish to find their average effect. In this case_ it is safe to

conclude that the cross-product terms will average to zero_ and

we have only the cos 2 a terms to consider. Similarly_ for the y

projections of the vectors sin 2 _ terms are obtained_ and terms

such as 2- sin _i" sin _2 cancel. Therefore_

A 2 2 + + cos 2 an )2 2 2 e cos a 3 " " "I ~ _ _ (cos _i _ cos <_2

+ a2(sin 2 2 _ + + sin2an)'_i sin _2 sin a 3 ...

2
Since sin 2 ak + cos 2 a k -_ 1 I we find at once that I _ _ n.

Thus_ the average intensity resulting from the superposition of

n waves with random phases is just n times that due to a single

wave.

The argument outlined above_ which is taken from

Fundamentals of Physical Optics_ by Jenkins and White_ can

readily be e._¢ended to the case of n waves when a varies.

However_ now the average intensity would also be a function of

the distribution of amplitudes.
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Therefore_ for the purpose of judging the intensity of

radiation at any point in the matrix_ if we average over a

sufficient number of events and wave trains_ the effect of

phase differences can be allowed for by straight addition of

the intensities of the individual averaged energy flows.

By using these concepts of statistical averaging of many

events_ the flow of energy can be depicted as shown in

Figure 70. We consider the flow of energy into a unit area

of paint film. On the average_ the amount of pigment encoun-

tered in a unit plane is the same as the fractional volume

concentration of pigment (ref. 26). The amount of reflected

incident energy_ I_ is IaE_ where E is the fractional volume

of solids. The amount I(l-d) E is transmitted through the

pigment_ while I(I-E) is transmitted through the vehicle.

For simplicity_ it is assumed that absorption is negligible_

although it is possible to extend the model to allow for

absorption.

The results of three successive encounters are shown in

Figure 70. Pictorial representation of a high number of

encounters is cumbersome_ but the number of events shown is

sufficient to illustrate the principle.

In order to develop a model of this amplitude_ it is

necessary to have terms for the number of screens needed to

simulate the film of paint and to establish a correlation

between the properties of the screens and the constituents

of the paint film.

D. Averaqe Track Lenqth within a Randomly Distributed

Paint System

If we create a model of a paint film in which we postulate

the existence of physically equivalent screens_ we have the

problem of deciding the number of screens to postulate and the

effect of varying the screen aperture.
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The following considerations yielded a possible method of

avoiding this problem. Let us calculate the average distance

traveled by light energy between pigment/surface encounters.

Consider first the simple case of a plane parallel beam of

light entering the surface of a paint film that has a pigment

volume concentration equal to e. At a distance L into the

paint film_ the proportion of the light beam that has not

encountered a pigment film is:

dI

- d-_ = _I

Therefore

I = I0e-U L
d

where I is the beam energy that has not yet encountered a

particle.

The average track ienath can be calculated by integrating

all the tracks at each depth before an encounter is registered.

Thus_

where

L =

0

I"

j LdN

N O

But

Therefore

0

" dN

N O

dN is the number of tracks of length L

L is average track length.

N : N0e-_L

0

r

J

= IN0

F

,-In(N/N0) __dn

-N O
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By integrating by parts.

L=!

This very simple result suggests that the average distance

between pigment/surface encounters is the reciprocal of the

pigment volume concentration. By a similar argument_ the

average track within the pigment is:

1
L =
P (l-v)

Implicitly in these formulas it has been understood that

L is measured in units of particle diameters. Expressing both

formulas in terms of average diameter of the pigment_ we have:

Any number of particle diameters = N
between surface encounters v

Average number of particle
= N

diameters for each residencies p

with a pigment

1 1
where N = - and N =

v c_ p (i-_)"

We tested the accuracy of these formulas in the following

way. Consider the Monte Carlo grid plot at 20% by volume

coverage. From the formulas_ the average distance between

particle surfaces should be 5 diameters. However_ since the

average path is only a small number of diameters_ the digitized

nature of the model plot has to be taken into account. The

reason for this can be understood from Figure 71. The theo-

retical calculation of the average track length is equivalent

to the total integration of the decay curve by taking small

increments like those shown as dN. The fact that the distances

on the Monte Carlo plot are digitized is equivalent to esti-

mating the area by the steps shown.

I

I

I

I

I

I
I

I
In deducing the formulas_ the pigment is considered to form a
continuous network of non-reentrant surfaces.
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CALCULATION OF AVERAGE TRACK LENGTH
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A set of tracks measured by going from particle to

particle is shown in Figure 72. Their average value is 4.6.

Since the properties of a random array should be the same in

all directions_ traveling from particle to particle in a fixed

direction should be exactly equivalent to traveling in all
directions from a fixed particle.

A set of randomly drawn lines was superimposed on the

plot of 20% coverage_ and the measured value for the average
track was found to be 3.2 as estimated from i00 items of

information. The reason for this short track length is that

implicitly in the deduction of the formula for the average

track length we assumed that each surface encounter was

independent of the previous encounter. The spatial con-

figuration of the clusters creates local regions of high

probability for short track lengths. The structure of some of

these clusters is shown separately in Figure 73. This structure
arises mainly from the existence of reentrant surfaces on the

cluster. Column II in Figure 73 was Constructed by replacing

clusters (column I) by circles of equal area with the center
of the circles at the center of mass of the clusters.

Figure 74 shows the redrawn Monte Carlo plot for 20%

coverage (Figure 23) in which each cluster has been redrawn

as a circle of equivalent area. Between clusters the whole

range of fractional paths is possible and reentrant surfaces
have been eliminated.

Two sets of i00 tracks were measured on this diagram by

using random lines. The average track length for the first

i00 tracks was 4.8 and for the second 5.2. Thus_ for this

model_ the expected value of 5 is achieved within the limits

of statistical fluctuations. For an actual pigment having

reentrant surfaces_ the diagrams of Figure 73 suggest that

conversion to spherical particles will increase the average
track length between particle and will therefore reduce the

probability of photon absorption.

°
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Selecte.J Cluster Regions

from the 20% Monte Carlo Plot

(Figure 23)

column I Redrawn as

Spheridized Clusters

of Equal Area

Figure 73

ELIMINATION OF SHORT TRACK LENGTHS: TYPICAL CLUSTERS OF CUBIC AND SPHERIC_, FORM
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ELIMINATION OF SHORT TRACK LENGTHS: SPHERIDIZED 20% MONTE CARLO PLOT

(Conversion of Figure 23)
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Figures 75 through 77 show sets of tracks measured on the

Monte Carlo plots at densities of 5_ l0 t and 15%. Within the

limits of statistical fluctuations_ the average track lengths

are as predicted from theory_ i.e._ i/_ diameters.

The successful prediction that the average track length

within a randomly distributed pigmented film is the reciprocal

of the volume fraction times the particle diameter indicates

that a satisfactory model for a paint film consists of a series

of translucent slabs of pigment material separated by the

average track length. Each slab is a perfectly diffusing

medium of thickness i/(i-_). The total surface of the slabs

is equal to the total surface of the pigment_ so that probably

the number of slabs is S/2d2k_ where S is the surface area/unit

volume expressed in the same units as the average particle

diameter_ and k is a constant related to the spatial geometry

of the particle and probably has to be determined empirically.

Treating the paint films as being constructed as a series

of parallel slabs of perfectly diffusing material is equivalent

to finding a physical basis for the Kubelka-Munk equations.

The Kubelka-Munk theory postulates that the material can be

treated as a perfectly diffusing material of given scattering

and absorption power. This is difficult to accept physically_

since a paint film is never large in terms of pigment diameter_

so that the laws of statistical average cannot be applied with-

out any qualification.

The treatment we have elaborated suggests that the reason

statistically based laws can be applied to paint films is that

the miriad of possible photon/track encounters represent a

large statistical averaging system with respect to time_ even

though the paint film is statistically thin.
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E. Comments on Theoretical Treatment of Paint Systems

The Kubelka-Munk theory for the transmission of radiant

energy through a paint film is essentially the Lambert-Beer

law with an added flux representing return flow of scattered

light through the system of scattering centers. It is strictly

limited because it postulates perfectly diffuse initial light

and is applicable only to a system having perfectly diffusing

physical boundaries. Duntley's theory extends the Kubelka-

Munk analysis to the case of an initially directed beam

entering a system having perfectly diffusing physical

boundaries.

It is not possible to construct a theory for the general

case of any boundary and type of light without extensive

experimental studies of all possible systems. The Monte Carlo

studies have established that the statistical basis of some of

the well-known physical laws governing systems have specified

boundary conditions_ i.e._ Lambert-Beer and Kubelka-Munk

equations. It is reasonable to hope that extended physical

experimentation combined with further Monte Carlo studies can

form the basis of a general treatment of reflective properties

of paint films.
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X. IMPLICATIONS OF MONTE CARLO STUDIES OF RANDOM TRACKS ACROSS

A CIRCLE FOR FILTRATION STUDIES

A. Concept of Randomness Applied to Fibrous Filters

Some filter systems are made by assembling an array of

fibers in a random manner. The random intercepts drawn in

Figures 78 through 81 can be considered as unit elements in a

filter composed of randomly assembled fibers. Figures 78

through 80 show three simulated sets of 20 random lines drawn

by using method A_ and Figure 81 a set of 20 lines drawn by

using method B (see Figures i0 and ii and the discussion in

Section III).

The fact that the two random arrays drawn by methods

A and B can both satisfy the technical definition of randomness

and yet have different physical properties indicates that

technologists dealing with filtration theory may encounter

difficulties arising from inadequate terminology. Apparently_

similar fibrous mats that in a qualitative sense can be

described as a random array of fibers may have been assembled

in two different ways_ which gave different types of randomness

_ _ "_ .... = =_ .... _- diff typ -= d_ _,= _um_ uxuL,= ux _±m_&_. x,_ erent es ux _ omness9

unsuspected by the technologist_ represent an uncontrolled

variable in the experimental studies of filter performance and

could cause unexpected differences in performance. The

performance differences that could arise from "randomness"

differences can be illustrated by the following considerations.

Two major mechanisms are used to capture particles passed

through a filter: (a) direct obstruction to the passage of a

particle by the pore system of the filter and (b) capture of

the particle by single fibers when the particles impact onto

the fiber. For both these mechanisms_ random fibers assembled

to form systems analogous to those constructed by method B will

be more efficient_ since in method B the pore distribution has

smaller probability for larger apertures and has more fiber

per unit area when captured by the second mechanism.
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Figure 78

LINES DRAWN BETWEEN TWO RANDOM NUMBERS SELECTED ON THE PERIMETER OF A CIRCLE
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Figure 79

LINES DRAWN BETWEEN TWO RANDOM NUMBERS SELECTED ON THE PERIMETER OF A CIRCLE
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Figure 80

LINES DRAWN BETWEEN TWO RANDOM NUMBERS SELECTED ON THE PERIMETER OF A CIRCLE
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Figure 81

LINES DRAWN PERPENDICULAR TO RADIUS FOR RANDOMLY SELECTED ANGLES TO A FIXED DIRECTION
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The effective pore-size distribution for the fiber simula-

tion system in Figures 78 through 81 was measured by using the

graticule shown in Figure 82. The largest circle that could be

placed in any aperture defined by the random fibers was defined

as the effective pore size for the passage of spherical

particles through the filter.

The size distributions measured for the systems in

Figures 78 through 81 are given in Figures 83 through 86_

respectively. The number of apertures for systems drawn by

method A were 70_ 80_ and 70; and the number for the system

drawn by method B was 109. The pore structure was quite

different for the system constructed by method B.

It can be seen that random track diagrams of the type

shown in Figures 78 through 81 could be used to study depen-

dence of the performance of filters on various random types of

arrays of fibers. If it were desired to simulate fiber systems

in this way_ the effect of the fiber diameter can be taken into

account by decreasing the radius of the circle considered able

to pass through the simulated aperture by the magnitude of the

fiber diameter.

If a filter mat is constructed by allowing relatively

short fibers to fall into position_ the randomness of the fiber

system will be analogous to system B_ since this corresponds to

the equal probability of all points in the plane of imposition

having a line through them. If_ however_ long fibers are

assembled so that the density of fibers at the perimeter is

uniform_ the fibrous system is analogous to system A for a

circular perimeter. From the estimated pore-size distribution

measurements_ it can be seen that the two systems would have

different properties.

It may be possible to make major advances in filtration

theory by considering the exact meaning of randomness in a

fiber system and devising techniques for achieving a random

system with optimum properties.
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Figure 82

GRATICULE FORDETERMINING PORE SIZE
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Total number of apertures = 70

0 1 2 3 4 5 6 7 8 9 i0 ii 12 13

Radius of Largest Circle with Integral Radius

Passing through Aperture

Figure 83

PORE-SIZE DISTRIBUTION OF SIMULATED FILTERS

(Simulated in Figure 78)

14
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Total number of apertures = 80

24

0 1 2 3 4 5 6 7 8 9 i0 ii 12

Radius of Largest Circle with Integral Radius

Passing through Aperture

Figure 84

PORE-SIZE DISTRIBUTION OF SIMULATED FILTERS

(Simulated in Figure 79)
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28-

0

Total number of apertures = 70

1 2 3 4 5 6 7 8 9 i0 ii 12
Radius of Largest Circle with Integral Radius

Passing thFough Aperture

Figure 85

PORE-SIZEDISTRIBUTIONOF SIMULATEDFILTERS
(Simulated in Figure 80)

174 IITRI-U6003-19_ Vol. 3



24

Total number of apertures = 109
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Figure 86

PORE-SIZE DISTRIBUTION OF SIMULATED FILTERS

(Simulated in Figure 81)
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B. Use of Random Intercept Diaqrams to Devise Monte Carlo

Methods for Studying Aerosol Filtration

Prediction of the performance of any filtering device is

complicated because of the many variables to be considered in

constructing an appropriate theoretical system. Many workers

have chosen to study the various factors that are known to

influence filter performance in isolation. Thus_ effects due

to flow conditions and to electrostatic forces are studied

separately. It is difficult to evaluate the usefulness of

these studies for actual filtration systems because of the

subtle way in which these variables interact. One way of

studying the behavior of complex interacting systems is to

construct an abstract model in which the major variables have

been simulated and which can be used to predict the orders of

importance of the various mechanisms by using the model as a

basis for a Monte Carlo experiment. In a Monte Carlo routine

a succession of events is simulated by using an abstract

system_ and the behavior of the model is studied as it under-

goes these successive events.

Consider the system of Figure 78 to be a set of simulated

fibers for a given filter system. To simulate particle capture_

we now use a transparent sheet of paper on which a random set

of particle profiles is simulated by using postulated charac-

teristics of the distribution of particles in an airstream.

This simulated set of particles can be placed on top of the

fibers in many positions and the probability of capture simu-

lated. In this way_ the effect of the interaction of a random

stream of particles encountering random fibers can be predicted.

The effect of the fiber diameter can be simulated by drawing a

dotted line at a distance of half a fiber width around the

particle profile. This has been illustrated for several parti-

cles in Figure 87.
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Figure 87

SIMULATED RANDOM ARRAY OF PARTICLES IN AN AIRSTREAM

Dotted line denotes encounter diameter.

177 IITRI-U6003-19_ Vol. 3



It is useful to think of particles pursuing a random walk

through the fibrous system. Thus_ imagine that a composite

filter consists of many sections like those in Figure 78 in

series with each other. Imagine we wanted to predict how many

filter sections would be required to capture all the particles

in Figure 87. We could have a series of drawings like that in

Figure 78_ each of which could be placed on top of Figure 87

in many random orientations. The experiment could be repeated

until all particles were captured. Each superposition of the

simulated fiber system would be a step in the random walk of

the particles through the filter.

The above concepts can obviously be extended to any sys-

tem of fibers_ either the regular pattern of a woven cloth or

the orientation of the bristles on a brush filter. It is even

possible to simulate the effect of rotary motion. For instance_

in the systems shown in Figures 78 through 81_ the fiber system

could be rotated a definite distance to simulate the mov_uent

occurring for a given movement of airstream through the system_

and thus the increased capture rate could be studied.

In conclusion_ it can be stated that the use of Monte

Carlo techniques for simulating random walk of particles

through a filter system could be very useful for investigating

capture efficiency of various fiber element orientations a:=

well as effects of rotation of the filtering mechanisms.
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XI. APPLICATION OF MONTE CARLO STUDIES TO METAL-FILLED

CONDUCTING PAINT FII_4S

In the development of microcircuitry_ paints filled with

metal particles have been developed so that at suitable volume

concentrations the paint films can conduct electricity. The

Monte Carlo plotting experiment can be used to gain an under-

standing of the development of conducting paths within paint

films.

At the higher concentrations used in the Monte Carlo

experiment it is difficult to locate the developing clusters

within the general density of particles on the graph paper.

The large clusters that developed at 27 to 40% by volume con-

centration are shown in Figures 28 through 32 (Section VIII).

The extent and the configuration of the clusters are shown by

the line traced through the individual particles. Smaller

clusters have been omitted for clarity_ and no attempt has

been made to show all clusters on each of the five diagrams.

In this system the properties of special interest in predicting

electrical properties are the attainment of a continuous path

through the unit volume and the number of paths existing at

any higher concentration.

The maximum volume concentration considered is 50%_ but

higher concentrations can be considered by using the inverted

plots of lower concentrations_ i.e._ by considering the par-

ticles as holes and the holes as particles. At 50% the plot

is essentially comprised of two networks_ from which it is

possible to derive a very large number of unique continuous

paths through the plot. Since the boundary conditions consi-

dered in Section VIII cannot be validly applied to a plot in

which the cluster size is comparable to the plot size_ further

discussion is restricted to plots of up to 40% concentration.

The important parameter in conduction of electricity

across a Monte Carlo plot is the extent of each cluster in the

direction considered. Tables 15 and 16 list the measured

spans of the clusters at various fractional concentrations in

a horizontal and a vertical direction_ respectively.

179 IITRI-U6003-19_ Vol. 3



Table 15

HORIZONTAL SPAN LENGTH DATA FOR CLUSTERS

Number of Clusters at Specified Fractional Concentration

Span .20 .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 .40

1 274 270 258 143 117 104 82 78 70 61 45 55

2 I13 106 i01 102 108 101 94 93 86 84 70 22

3 53 53 53 52 51 55 57 56 55 49 43 ii

4 24 25 29 28 28 25 21 20 23 20 21 6

5 15 17 18 21 22 23 26 18 16 17 18 7

6 13 12 13 12 9 i0 ii 14 12 13 14 9

7 7 8 8 i0 12 12 ii ii Ii i0 5 3

8 3 4 6 7 6 6 8 7 9 9 13 2

9 1 2 2 2 1 1 2 4 3 4 4 1

i0 1 2 2 2 3 3 3 5 6 5 9 3

ii 1 1 2 2 3 3 3 3 0

12 1 0 0 1 2 2 1 1

13 1 1 1 0 0 0 1 0

14 1 1 1 1 1 1 0

15 1 0 0 0 0

16 1 1 1 0

17 0 0 0 0

18 0 0 0 0

19 0 1 1 0

20 0 0 0 2

21 1 1 1 1

37 1

56 1

57 1
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Table 16

VERTICAL SPAN LENGTH DATA FOR CLUSTERS

R

!

!

|

Span

1

2

3

4

5

6

7

8

9

l0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

27

30

71

75

Number of Clusters at Specified Fractional Concentration
.20 .21 .22 .23 .24 .25 .26 .27 .28 .29 .30 .40

277

103

59

24

16

ii

6

0

3

2

272 258 141 124 103 82 80 71 62 45 57

102 96 96 88 95 77 72 64 62 53 16

56 59 59 63 57 56 57 57 53 42 13

22 25 24 21 25 24 21 25 23 24 7

19 17 24 25 26 27 24 23 19 21 ii

13 15 16 17 15 13 12 12 15 17 1

8 i0 8 i0 i0 15 Ii i0 9 8 4

0 1 3 3 2 2 5 5 4 4 1

3 4 5 5 7 7 7 7 ii 9 1

1 0 0 0 0 0 1 2 1 4 0

0 1 1 1 2 2 3 3 3 3 2

0 0 0 0 0 0 0 0 0 2 1

0 0 0 1 0 1 1 1 1 1 1

0 0 0 0 0 0 1 2 2 1 2

1 1 1 0 1 0 1 1 1 1 0

1 0 1 2 2 2 2 0

1 2 2 3 3 4 3 1

1 1 1 0 0

0 0 0 1 3

0 0 0 0 1

1 1 1 2

0

0

1

1

1

1

1

!

!

!

!
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The data for fractional concentrations of 0.3 and 0.4 are

presented in Tables 17 and 18 as cumulative percentage of

clusters having spans larger than a stated size. These data

are shown in Figures 88 and 89. The distribution of lengths

can be anticipated from statistical properties of randomly

distributed systems and_ as shown in Figures 88 and 89_ is the

same in each direction.

In Table 19_ the two sets of data from Tables 17 and 18

at 0.3 and 0.4 fractional concentration have been combined to

form the best estimate of the equivalent linear path length

distributions. These distributions_ shown in Figure 13_ de-

scribe projections in any direction provided that a suffi-

ciently large number of clusters is considered.

Figure 90 can be used to study the properties of a paint

film in the following manner. For two paint films of thick-

ness n I and n 2 pigment diameters_ the ratio of the probabili-

ties of straight-through paths for the two films should be the

ratio of the conductance of the two films. From the expected

fluctuation in any given probability of occurrence_ it should

be possible to predict fluctuations in conductances of films

of the same thickness and area and for films of different area.

Figures 91 and 92 show the number of clusters that span up to

six diameters at various volume concentrations.

1

I

i

I
I
I

!

I
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Table 17

HORIZONTAL SPAN LENGTH DATA FOR CLUSTERS

Cumulative Number at Specified

Fractional Concentration_ %

Span 0.3 0.4

1 17.9 43.6

2 45.8 61.1

3 63.0 69.8
4 71.4 74.5

5 78.5 80.1

6 84.0 87.2

7 86.0 89.6

8 91.1 91.2

9 92.7 92.1

i0 96.4 94.4

ii 97.6 94.4

12 98.0 96.6

13 98.4 96.6

Table 18

VERTICAL SPA_ LENGTH _.... _v_n _,,_m_

Cumulative Number at Specified

Fractional Concentration_

Span 0.3 0.4

1 18.4 45.2

2 40.1 58.8

3 57.4 68.1

4 67.2 73.8

5 75.8 82.5

6 82.8 83.4

7 86.2 86.5

8 87.6 87.4

9 91.4 88.0

i0 93.0 88.0

II 94.2 89.9

12 95.0 90.5

13 95.5 91.2

14 95.9 93.0
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Cumulative Number of Clusters

Having Span Larger Than Stated Size_ %

Figure 88

NUMBER DISTRIBUTION OF HORIZONTAL AND VERTICAL CLUSTER

SPAN LENGTHS AT 0.3 FRACTIONAL VOLUME CONCENTRATION
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Figure 89

NUMBER DISTRIBUTION OF HORIZONTAL AND VERTICAL CLUSTER

SPAN LENGTHS AT 0.4 FRACTIONAL VOLUME CONCENTRATION
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Table 19

COMBINEDHORIZONTALAND VERTICAL
SPAN LENGTH DATA FOR CLUSTERS

Cumulative Number at Specified
Fractional Concentration_ %

O.3 O.4span

1
2

3

4

5

6

7

8

9

l0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

18.0 44.5

42.6 59.5

58.6 69.0

68.6 74.1

76.4 81.3

82.6 85.0

85.2 88.0

88.6 89.1

91.2 90.0

93.0 91.2

95.0 92.0

95.6 92.7

96.0 93.1

96.4 94.0

96.6 94.0

97.2 94.0

97.8 94.4

97.8 94.4

98.2 95.5

98.2 97.0

98.8

99.8

99.8

i00.0
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Figure 90

NUMBER DISTRIBUTION OF HORIZONTAL AND VERTICAL CLUSTER

SPAN LENGTHS AT VARIOUS VOLUME CONCENTRATIONS
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Figure 91

DISTRIBUTION OF HORIZONTAL SPAN OF CLUSTERS EXPRESSED IN PARTICLE DIAMETERS
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DISTRIBUTION OF VERTICAL SPAN OF CLUSTERS EXPRESSED IN PARTICLE DIAMETERS
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